Advertisement

Variations on Instant Insanity

  • Erik D. Demaine
  • Martin L. Demaine
  • Sarah Eisenstat
  • Thomas D. Morgan
  • Ryuhei Uehara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8066)

Abstract

In one of the first papers about the complexity of puzzles, Robertson and Munro [14] proved that a generalized form of the then-popular Instant Insanity puzzle is NP-complete. Here we study several variations of this puzzle, exploring how the complexity depends on the piece shapes and the allowable orientations of those shapes.

Keywords

Polynomial Time Visible Color Assignment Function Cyclic Shift Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arlinghaus, W.C.: The tantalizing four cubes. In: Michaels, J.G., Rosen, K.H. (eds.) Applications of Discrete Mathematics, ch. 16. McGraw-Hill Higher Education (1991)Google Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berkove, E., Van Sickle, J., Hummon, B., Kogut, J.: An analysis of the (colored cubes)3 puzzle. Discrete Mathematics 308(7), 1033–1045 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chartrand, G.: Introductory Graph Theory, pp. 125–132. Courier Dover Publications (1985); Originally published in 1977 as Graphs as Mathematical ModelsGoogle Scholar
  5. 5.
    Eppstein, D.: Computational complexity of games and puzzles (April 2013), http://www.ics.uci.edu/~eppstein/cgt/hard.html
  6. 6.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5(4), 691–703 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hall, P.: On representatives of subsets. Journal of the London Mathematical Society s1-10(1), 26–30 (1935)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters (July 2009)Google Scholar
  9. 9.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jebasingh, A., Simoson, A.: Platonic solid insanity. In: Congressus Numerantium, vol. 154, pp. 101–112 (2002)Google Scholar
  11. 11.
    Kendall, G., Parkes, A., Spoerer, K.: A survey of NP-complete puzzles. ICGA Journal 31(1), 13–34 (2008)Google Scholar
  12. 12.
    O’Beirne, T.H.: Puzzles and paradoxes. New Scientist 247, 358–359 (1961)zbMATHGoogle Scholar
  13. 13.
    United States Patent and Trademark Office. Trademark Electronic Search System (TESS) (April 2013), http://tmsearch.uspto.gov/
  14. 14.
    Robertson, E., Munro, I.: NP-completeness, puzzles and games. Utilitas Mathematica 13, 99–116 (1978)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, vol. 14, pp. 216–226 (1978)Google Scholar
  16. 16.
    van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Martin L. Demaine
    • 1
  • Sarah Eisenstat
    • 1
  • Thomas D. Morgan
    • 2
  • Ryuhei Uehara
    • 3
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  3. 3.School of Information ScienceJapan Advanced Institute of Science and Technology (JAIST)NomiJapan

Personalised recommendations