Quake Heaps: A Simple Alternative to Fibonacci Heaps

  • Timothy M. Chan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8066)


This note describes a data structure that has the same theoretical performance as Fibonacci heaps, supporting decrease-key operations in O(1) amortized time and delete-min operations in O(log n) amortized time. The data structure is simple to explain and analyze, and may be of pedagogical value


Priority Queue High Node Simple Alternative Left Child Amortize Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Driscoll, J., Gabow, H., Shrairman, R., Tarjan, R.: Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation. Commun. ACM 31, 1343–1354 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Elmasry, A.: The violation heap: a relaxed Fibonacci-like heap. Discrete Math., Alg. and Appl. 2, 493–504 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Elmasry, A.: Pairing heaps with O(loglogn) decrease cost. In: Proc. 20th ACM–SIAM Sympos. Discrete Algorithms, pp. 471–476 (2009)Google Scholar
  4. 4.
    Fredman, M., Sedgewick, R., Sleator, D., Tarjan, R.: The pairing heap: a new form of self-adjusting heap. Algorithmica 1, 111–129 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM J. Comput. 40, 1463–1485 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Høyer, P.: A general technique for implementation of efficient priority queues. In: Proc. 3rd Israel Sympos. Theory of Comput. Sys., pp. 57–66 (1995)Google Scholar
  8. 8.
    Kaplan, H., Tarjan, R.: Thin heaps, thick heaps. ACM Trans. Algorithms 4(1), 3 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Peterson, G.: A balanced tree scheme for meldable heaps with updates. Tech. Report GIT-ICS-87-23, Georgia Institute of Technology (1987)Google Scholar
  10. 10.
    Pettie, S.: Towards a final analysis of pairing heaps. In: Proc. 46th IEEE Sympos. Found. Comput. Sci., pp. 174–183 (2005)Google Scholar
  11. 11.
    Takaoka, T.: Theory of 2-3 heaps. Discrete Applied Math. 126, 115–128 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Timothy M. Chan
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations