Array range queries are of current interest in the field of data structures. Given an array of numbers or arbitrary elements, the general array range query problem is to build a data structure that can efficiently answer queries of a given type stated in terms of an interval of the indices. The specific query type might be for the minimum element in the range, the most frequently occurring element, or any of many other possibilities. In addition to being interesting in themselves, array range queries have connections to computational geometry, compressed and succinct data structures, and other areas of computer science. We survey recent and relevant past work on this class of problems.


array range query document retrieval range search selection range frequency top-k 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999)CrossRefGoogle Scholar
  2. 2.
    Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.): ICALP 2009, Part I. LNCS, vol. 5555. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA, November 12-14, pp. 198–207 (2000)Google Scholar
  4. 4.
    Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.): ISAAC 2011. LNCS, vol. 7074. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Belazzougui, D., Gagie, T., Navarro, G.: Better space bounds for parameterized range majority and minority. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 121–132. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Ben-Or, M.: Lower bounds for algebraic computation trees (preliminary report). In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, April 25-27, pp. 80–86 (1983)Google Scholar
  8. 8.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Berkman, O., Vishkin, U.: Recursive *-tree parallel data-structure. In: Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1989, Research Triangle Park, NC, October 30-November 1, pp. 196–202. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  10. 10.
    Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2), 221–242 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 377–388. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.: New upper bounds for generalized intersection searching problems. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 464–474. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range reporting. In: [28], pp. 173–182Google Scholar
  16. 16.
    Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range medians. Theoret. Comput. Sci. 412(24), 2588–2601 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Brodal, G.S., Jørgensen, A.G.: Data structures for range median queries. In: [28], pp. 822–831Google Scholar
  18. 18.
    Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the prefix sum problem on a specialized memory architecture. In: Navarro, G., Bertossi, L.E., Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 103–114. Springer, Boston (2006)Google Scholar
  19. 19.
    Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-space data structures for range mode query in arrays. In: Dürr, C., Wilke, T. (eds.) 29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012, Paris, France, February 29-March 3. LIPIcs, vol. 14, pp. 290–301. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  20. 20.
    Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-space data structures for range mode query in arrays. Theory Comput. Sys., 1–23 (2013)Google Scholar
  21. 21.
    Chan, T.M., Durocher, S., Skala, M., Wilkinson, B.T.: Linear-space data structures for range minority query in arrays. In: [36], pp. 295–306Google Scholar
  22. 22.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line. Internat. J. Comput. Geom. Appl. 1(1), 33–45 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chun, S.J., Chung, C.W., Lee, J.H., Lee, S.L.: Dynamic update cube for range-sum queries. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) Proceedings of the Twenty-seventh International Conference on Very Large Data Bases, Roma, Italy, September 11-14, pp. 521–530. Morgan Kaufmann Publishers (2001)Google Scholar
  25. 25.
    de Berg, M., Haverkort, H.J.: Significant-presence range queries in categorical data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 462–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range minimum queries. In: [2], pp. 341–353 Google Scholar
  27. 27.
    Dobkin, D., Munro, J.I.: Determining the mode. Theoret. Comput. Sci. 12(3), 255–263 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dong, Y., Du, D.-Z., Ibarra, O. (eds.): ISAAC 2009. LNCS, vol. 5878. Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Durocher, S.: A simple linear-space data structure for constant-time range minimum query. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Munro Festschrift 2013. LNCS, vol. 8066, pp. 48–60. Springer, Heidelberg (2013)Google Scholar
  30. 30.
    Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in constant time and linear space. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 244–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in constant time and linear space. Inform. and Comput. 222, 169–179 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Elmasry, A., He, M., Munro, J.I., Nicholson, P.K.: Dynamic range majority data structures. In: [5], pp. 150–159Google Scholar
  33. 33.
    Eppstein, D. (ed.): Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Mathematics (SODA 2002), January 6-8. ACM Press, New York (2002)Google Scholar
  34. 34.
    Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Fischer, J., Heun, V.: A new succinct representation of RMQ-information and improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Fomin, F.V., Kaski, P. (eds.): SWAT 2012. LNCS, vol. 7357. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  37. 37.
    Fredman, M.L.: The complexity of maintaining an array and computing its partial sums. J. ACM 29(1), 250–260 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, April 30-May 2, pp. 135–143. ACM Press, Washington, DC (1984)Google Scholar
  39. 39.
    Gagie, T., He, M., Munro, J.I., Nicholson, P.K.: Finding frequent elements in compressed 2D arrays and strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 295–300. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Gagie, T., Kärkkäinen, J.: Counting colours in compressed strings. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 197–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  41. 41.
    Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and document retrieval. Theoret. Comput. Sci. 483, 36–50 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Gagie, T., Navarro, G., Puglisi, S.J.: Colored range queries and document retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  43. 43.
    Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 1–6. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  44. 44.
    Geffner, S., Agrawal, D., Abbadi, A.E., Smith, T.R.: Relative prefix sums: An efficient approach for querying dynamic OLAP data cubes. In: Kitsuregawa, M., Papazoglou, M.P., Pu, C. (eds.) Proceedings of the 15th International Conference on Data Engineering, Sydney, Austrialia, March 23-26, pp. 328–335. IEEE Computer Society (1999)Google Scholar
  45. 45.
    Gfeller, B., Sanders, P.: Towards optimal range medians. In: [2], pp. 475–486Google Scholar
  46. 46.
    Golynski, A.: Optimal lower bounds for rank and select indexes. Theoret. Comput. Sci. 387(3), 348–359 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Greve, M., Jørgensen, A.G., Larsen, K.D., Truelsen, J.: Cell probe lower bounds and approximations for range mode. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 605–616. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  48. 48.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete Algorithms), pp. 841–850. ACM/SIAM (2003)Google Scholar
  49. 49.
    Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection searching problems: Counting, reporting, and dynamization. J. Algorithms 19(2), 282–317 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Hampapuram, H., Fredman, M.L.: Optimal biweighted binary trees and the complexity of maintaining partial sums. SIAM J. Comput. 28(1), 1–9 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    He, M., Munro, J.I.: Space efficient data structures for dynamic orthogonal range counting. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 500–511. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  53. 53.
    He, M., Munro, J.I., Nicholson, P.K.: Dynamic range selection in linear space. In: [5], pp. 160–169Google Scholar
  54. 54.
    He, M., Munro, J.I., Nicholson, P.K.: Dynamic range selection in linear space. CoRR abs/1106.5076v3 (2013),
  55. 55.
    He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: [5], pp. 140–149Google Scholar
  56. 56.
    He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  57. 57.
    Ho, C.T., Agrawal, R., Megiddo, N., Srikant, R.: Range queries in OLAP data cubes. In: Peckman, J.M. (ed.) Proceedings, ACM SIGMOD International Conference on Management of Data: SIGMOD 1997, Tucson, Arizona, USA, May 13-15. SIGMOD Record (ACM Special Interest Group on Management of Data), vol. 26(2), pp. 73–88. ACM Press (1997)Google Scholar
  58. 58.
    Hon, W.K., Shah, R., Thankachan, S.V.: Towards an optimal space-and-query-time index for top-k document retrieval. In: [64], pp. 173–184Google Scholar
  59. 59.
    Hon, W.K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string retrieval problems. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, Atlanta, Georgia, USA, October 25-27, pp. 713–722. IEEE Computer Society (2009)Google Scholar
  60. 60.
    Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symp. on Foundations of Computer Science, vol. 30, pp. 549–554 (1989)Google Scholar
  61. 61.
    Jacobson, G.: Succinct Static Data Structures. PhD thesis, Carnegie-Mellon, Technical Report CMU-CS-89-112 (January 1989)Google Scholar
  62. 62.
    Janardan, R., Lopez, M.: Generalized intersection searching problems. Internat. J. Comput. Geom. Appl. 3(1), 39–69 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Jørgensen, A.G., Larsen, K.G.: Range selection and median: Tight cell probe lower bounds and adaptive data structures. In: [83], pp. 805–813Google Scholar
  64. 64.
    Kärkkäinen, J., Stoye, J. (eds.): CPM 2012. LNCS, vol. 7354. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  65. 65.
    Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: Proceedings of the 20th Annual Canadian Conference on Computational Geometry, Montréal, Canada, August 13-15 (2008)Google Scholar
  66. 66.
    Karpinski, M., Nekrich, Y.: Top-k color queries for document retrieval. In: [83], pp. 401–411Google Scholar
  67. 67.
    Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists and trees. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 517–526. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  68. 68.
    Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Lai, Y., Poon, C., Shi, B.: Approximate colored range and point enclosure queries. J. Discrete Algorithms 6(3), 420–432 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoret. Comput. Sci. 387(3), 332–347 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Munro, J.I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Comput. 5(1), 1–8 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  73. 73.
    Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: [33], pp. 657–666Google Scholar
  74. 74.
    Navarro, G.: Wavelet trees for all. In: [64], pp. 2–26Google Scholar
  75. 75.
    Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 15–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  76. 76.
    Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput. Geom. 42(4), 342–351 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Nekrich, Y., Navarro, G.: Sorted range reporting. In: [36], pp. 271–282Google Scholar
  78. 78.
    Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Patrascu, M.: Succincter. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, Philadelphia, Pennsylvania, USA, October 25-23, pp. 305–313. IEEE (2008)Google Scholar
  80. 80.
    Petersen, H.: Improved bounds for range mode and range median queries. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 418–423. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  81. 81.
    Petersen, H., Grabowski, S.: Range mode and range median queries in constant time and sub-quadratic space. Inf. Process. Lett. 109(4), 225–228 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Poon, C.K.: Dynamic orthogonal range queries in OLAP. Theoret. Comput. Sci. 296(3), 487–510 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Randall, D. (ed.): Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25. SIAM (2011)Google Scholar
  84. 84.
    Sadakane, K.: Succinct representations of lcp information and improvements in the compressed suffix arrays. In: [35], pp. 225–232Google Scholar
  85. 85.
    Yao, A.C.C.: On the complexity of maintaining partial sums. SIAM J. Comput. 14(2), 277–288 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthew Skala
    • 1
  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations