Advertisement

A Survey of Algorithms and Models for List Update

  • Shahin Kamali
  • Alejandro López-Ortiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8066)

Abstract

The list update problem was first studied by McCabe [47] more than 45 years ago under distributional analysis in the context of maintaining a sequential file. In 1985, Sleator and Tarjan [55] introduced the competitive ratio framework for the study of worst case behavior on list update algorithms. Since then, many deterministic and randomized online algorithms have been proposed and studied under this framework. The standard model as originally introduced has a peculiar cost function for the rearrangement of the list after each search operation. To address this, several variants have been introduced, chiefly the MRM model (Martínez and Roura, [46]; Munro, [49]), the paid exchange model, and the compression model. Additionally, the list update problem has been studied under locality of reference assumptions, and several models have been proposed to capture locality of input sequences. This survey gives a brief overview of the main list update algorithms, the main alternative cost models, and the related results for list update with locality of reference. Open problems and directions for future work are included.

Keywords

Competitive Ratio Online Algorithm Competitive Analysis Compression Model Request Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: Improved randomized on-line algorithms for the list update problem. SIAM J. Comput. 27, 682–693 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2), 3–26 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. J. Comput. Systems Sci. 70(2), 145–175 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Albers, S., Lauer, S.: On list update with locality of reference. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 96–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Albers, S., Mitzenmacher, M.: Average case analyses of list update algorithms, with applications to data compression. Algorithmica 21(3), 312–329 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP algorithm for the list update problem. Inform. Process. Lett. 56, 135–139 (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A. (ed.) Online Algorithms 1996. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Ambühl, C.: Offline list update is NP-hard. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 42–51. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Ambühl, C., Gärtner, B., von Stengel, B.: Optimal projective algorithms for the list update problem. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 305–316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Ambühl, C., Gärtner, B., von Stengel, B.: A new lower bound for the list update problem in the partial cost model. Theoret. Comput. Sci. 268, 3–16 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ambühl, C., Gärtner, B., von Stengel, B.: Optimal projective algorithms for the list update problem. CoRR, abs/1002.2440 (2010)Google Scholar
  12. 12.
    Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies. In: Proc. 18th Symp. on Discrete Algorithms (SODA), pp. 229–237 (2007)Google Scholar
  13. 13.
    Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of reference. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 399–410. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Angelopoulos, S., Schweitzer, P.: Paging and list update under bijective analysis. In: Proc. 20th Symp. on Discrete Algorithms (SODA), pp. 1136–1145 (2009)Google Scholar
  15. 15.
    Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications: Recent empirical evidence. In: Proc. 8th Symp. on Discrete Algorithms (SODA), pp. 53–62 (1997)Google Scholar
  16. 16.
    Bachrach, R., El-Yaniv, R., Reinstadtler, M.: On the competitive theory and practice of online list accessing algorithms. Algorithmica 32(2), 201–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Becchetti, L.: Modeling locality: A probabilistic analysis of LRU and FWF. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11, 73–91 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power of randomization in on-line algorithms. Algorithmica 11, 2–14 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bentley, J.L., Sleator, D., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression scheme. Commun. ACM 29, 320–330 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  22. 22.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Comput. Systems Sci. 50, 244–258 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for online algorithms. ACM Trans. Algorithms 3(2) (2007)Google Scholar
  24. 24.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to paging. J. Comput. Systems Sci. 73(5), 818–843 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation. ACM Trans. Algorithms 4(4) (2008)Google Scholar
  27. 27.
    Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical Report 124, DEC SRC (1994)Google Scholar
  28. 28.
    Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Denning, P.J.: The working set model for program behaviour. Commun. ACM 11(5), 323–333 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Denning, P.J.: Working sets past and present. IEEE Trans. Softw. Eng. 6, 64–84 (1980)CrossRefGoogle Scholar
  31. 31.
    Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT News 36, 67–81 (2005)CrossRefGoogle Scholar
  32. 32.
    Dorrigiv, R., López-Ortiz, A., Munro, J.I.: An application of self-organizing data structures to compression. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 137–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List factoring and relative worst order analysis. Algorithmica 66(2), 287–309 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    El-Yaniv, R.: There are infinitely many competitive-optimal online list accessing algorithms. Manuscript (1996)Google Scholar
  35. 35.
    Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Separating online scheduling algorithms with the relative worst order ratio. J. Comb. Optim. 12(4), 363–386 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Comparing online algorithms for bin packing problems. J. Sched. 15(1), 13–21 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Golynski, A., López-Ortiz, A.: Optimal strategies for the list update problem under the MRM alternative cost model. Inform. Process. Lett. 112(6), 218–222 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hagerup, T.: Online and offline access to short lists. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 691–702. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. ACM Computing Surveys 17, 295–312 (1985)CrossRefGoogle Scholar
  40. 40.
    Irani, S.: Two results on the list update problem. Inform. Process. Lett. 38, 301–306 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with locality of reference. SIAM J. Comput. 25, 477–497 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Irani, S., Reingold, N., Sleator, D., Westbrook, J.: Randomized competitive algorithms for the list update problem. In: Proc. 2nd Symp. on Discrete Algorithms (SODA), pp. 251–260 (1991)Google Scholar
  43. 43.
    Kamali, S., Ladra, S., López-Ortiz, A., Seco, D.: Context-based algorithms for the list-update problem under alternative cost models. In: Proc. Data Compression Conf., (DCC) (to appear, 2013)Google Scholar
  44. 44.
    Karlin, A., Phillips, S., Raghavan, P.: Markov paging. In: Proc. 33rd Symp. on Foundations of Computer Science (FOCS), pp. 208–217 (1992)Google Scholar
  45. 45.
    Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms for online problems. In: Proc. 20th Symp. on Theory of Computing (STOC), pp. 322–333 (1988)Google Scholar
  46. 46.
    Martínez, C., Roura, S.: On the competitiveness of the move-to-front rule. Theoret. Comput. Sci. 242(1-2), 313–325 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    McCabe, J.: On serial files with relocatable records. Oper. Res. 12, 609–618 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Mohanty, R., Narayanaswamy, N.S.: Online algorithms for self-organizing sequential search - a survey. Elect. Coll. on Comput. Complexity 16, 97 (2009)Google Scholar
  49. 49.
    Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  50. 50.
    Reingold, N., Westbrook, J.: Randomized algorithms for the list update problem. Technical Report YALEU/DCS/TR-804, Yale University (1990)Google Scholar
  51. 51.
    Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. Inform. Process. Lett. 60(2), 75–80 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for the list update problem. Algorithmica 11, 15–32 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rivest, R.: On self-organizing sequential search heuristics. Commun. ACM 19, 63–67 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Schulz, F.: Two new families of list update algorithms. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 99–108. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  55. 55.
    Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28, 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Teia, B.: A lower bound for randomized list update algorithms. Inform. Process. Lett. 47, 5–9 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Torng, E.: A unified analysis of paging and caching. Algorithmica 20(2), 175–200 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shahin Kamali
    • 1
  • Alejandro López-Ortiz
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations