Multi-run 3D Streetside Reconstruction from a Vehicle

  • Yi Zeng
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8047)


Accurate 3D modellers of real-world scenes are important tools for visualizing or understanding outside environments. The paper considers a camera-based 3D reconstruction system where stereo cameras are mounted on a mobile platform, recording images while moving through the scene. Due to the limited viewing angle of the cameras, resulting reconstructions often result in missing (e.g. while occluded) components of the scene. In this paper, we propose a stereo-based 3D reconstruction framework for merging multiple runs of reconstructions when driving in different directions through a real-world scene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    3D Reality Maps, (last visited in April 2013)
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Analysis Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  4. 4.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graphics 13, 43–72 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Geiger, A., Ziegler, J., Stiller, C.: StereoScan: Dense 3d reconstruction in real-time. In: Proc. IEEE IV, pp. 963–968 (2011)Google Scholar
  6. 6.
    Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Proc. Alvey Vision Conf., pp. 147–151 (1988)Google Scholar
  7. 7.
    Heidelberg Robust Vision Challenge at ECCV 2012 (2012),
  8. 8.
    Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Huang, F., Klette, R.: City-scale modeling towards street navigation applications. J. Information Convergence Communication Engineering 10 (2012)Google Scholar
  10. 10.
    Jiang, R., Klette, R., Wang, S.: Statistical modeling of long-range drift in visual odometry. In: Koch, R., Huang, F. (eds.) ACCV 2010 Workshops, Part II. LNCS, vol. 6469, pp. 214–224. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. Proc. IJCAI 2, 674–679 (1981)Google Scholar
  13. 13.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. CVPR, vol. 1, pp. 652–659 (2004)Google Scholar
  14. 14.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: Proc. IEEE ICRA, pp. 3212–3217 (2009)Google Scholar
  15. 15.
    Sünderhauf, N., Konolige, K., Lacroix, S., Protzel, P.: Visual odometry using sparse bundle adjustment on an autonomous outdoor vehicle. In: Proc. Autonome Mobile Systems, pp. 157–163 (2005)Google Scholar
  16. 16.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Xiao, J., Fang, T., Zhao, P., Lhuilier, M., Quan, L.: Image-based street-side city modeling. In: Proc. SIGGRAPH, pp. 114:1–114:12 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yi Zeng
    • 1
  • Reinhard Klette
    • 1
  1. 1.The .enpeda.. Project, Department of Computer ScienceThe University of AucklandNew Zealand

Personalised recommendations