3D Human Tracking from Depth Cue in a Buying Behavior Analysis Context

  • Cyrille Migniot
  • Fakhreddine Ababsa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8047)


This paper presents a real time approach to track the human body pose in the 3D space. For the buying behavior analysis, the camera is placed on the top of the shelves, above the customers. In this top view, the markerless tracking is harder. Hence, we use the depth cue provided by the kinect that gives discriminative features of the pose. We introduce a new 3D model that are fitted to these data in a particle filter framework. First the head and shoulders position is tracked in the 2D space of the acquisition images. Then the arms poses are tracked in the 3D space. Finally, we demonstrate that an efficient implementation provides a real-time system.


Human tracking kinect particle filter buying behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ababsa, F.: Robust Extended Kalman Filtering For Camera Pose Tracking Using 2D to 3D Lines Correspondences. In: IEEE/ASME Conference on Advanced Intelligent Mechatronics, pp. 1834–1838 (2009)Google Scholar
  2. 2.
    Ababsa, F., Mallem, M.: A Robust Circular Fiducial Detection Technique and Real-Time 3D Camera Tracking. International Journal of Multimedia 3, 34–41 (2008)Google Scholar
  3. 3.
    Canton-Ferrer, C., Salvador, J., Casas, J.R., Pardàs, M.: Multi-person Tracking Strategies Based on Voxel Analysis. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) CLEAR 2007 and RT 2007. LNCS, vol. 4625, pp. 91–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Deutscher, J., Reid, I.: Articulated Body Motion Capture by Stochastic Search. International Journal of Computer Vision 2, 185–205 (2005)CrossRefGoogle Scholar
  5. 5.
    Didier, J.Y., Ababsa, F., Mallem, M.: Hybrid Camera Pose Estimation Combining Square Fiducials Localisation Technique and Orthogonal Iteration Algorithm. International Journal of Image and Graphics 8, 169–188 (2008)CrossRefGoogle Scholar
  6. 6.
    Gonzalez, M., Collet, C.: Robust Body Parts Tracking using Particle Filter and Dynamic Template. In: IEEE International Conference on Image Processing, pp. 529–532 (2011)Google Scholar
  7. 7.
    Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like Spatial Priors for Articulated Tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 425–437. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Horaud, R., Niskanen, M., Dewaele, G., Boyer, E.: Human Motion Tracking by Registering an Articulated Surface to 3D Points and Normals. IEEE Transaction on Pattern Analysis and Machine Intelligence 31, 158–163 (2009)CrossRefGoogle Scholar
  9. 9.
    Isard, M., Blake, A.: CONDENSATION - Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29, 5–28 (1998)CrossRefGoogle Scholar
  10. 10.
    Kjellström, H., Kragic, D., Black, M.J.: Tracking People Interacting with Objects. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  11. 11.
    Kobayashi, Y., Sugimura, D., Sato, Y., Hirasawa, K., Suzuki, N., Kage, H., Sugimoto, A.: 3D Head Tracking using the Particle Filter with Cascaded Classifiers. In: British Machine Vision Conference, pp. 37–46 (2006)Google Scholar
  12. 12.
    Lin, J.Y., Wu, Y., Huang, T.S.: 3D Model-based Hand Tracking using Stochastic Direct Search Method. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 693–698 (2004)Google Scholar
  13. 13.
    Funes-Mora, K.A., Odobez, J.: Gaze Estimation from Multimodal Kinect Data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–30 (2012)Google Scholar
  14. 14.
    Micilotta, A., Bowden, R.: View-Based Location and Tracking of Body Parts for Visual Interaction. In: British Machine Vision Conference, pp. 849–858 (2004)Google Scholar
  15. 15.
    Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast Articulated Motion Tracking using a Sums of Gaussians Body Model. In: International Conference on Computer Vision, pp. 951–958 (2011)Google Scholar
  16. 16.
    Xia, L., Chen, C.C., Aggarwal, J.K.: Human Detection Using Depth Information by Kinect. In: International Workshop on Human Activity Understanding from 3D Data (2011)Google Scholar
  17. 17.
    Yang, C., Duraiswami, R., Davis, L.: Fast Multiple Object Tracking via a Hierarchical Particle Filter. In: International Conference on Computer Vision, pp. 212–219 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cyrille Migniot
    • 1
  • Fakhreddine Ababsa
    • 1
  1. 1.IBISC laboratoryUniversity of Evry val d’EssonneFrance

Personalised recommendations