Advertisement

On Achieving Near-Optimal “Anti-Bayesian” Order Statistics-Based Classification for Asymmetric Exponential Distributions

  • Anu Thomas
  • B. John Oommen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8047)

Abstract

This paper considers the use of Order Statistics (OS) in the theory of Pattern Recognition (PR). The pioneering work on using OS for classification was presented in [1] for the Uniform distribution, where it was shown that optimal PR can be achieved in a counter-intuitive manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample to a few samples distant from the mean - which is distinct from the optimal Bayesian paradigm. In [2], we showed that the results could be extended for a few symmetric distributions within the exponential family. In this paper, we attempt to extend these results significantly by considering asymmetric distributions within the exponential family, for some of which even the closed form expressions of the cumulative distribution functions are not available. These distributions include the Rayleigh, Gamma and certain Beta distributions. As in [1] and [2], the new scheme, referred to as Classification by Moments of Order Statistics (CMOS), attains an accuracy very close to the optimal Bayes’ bound, as has been shown both theoretically and by rigorous experimental testing.

Keywords

Classification using Order Statistics (OS) Moments of OS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, A., Oommen, B.J.: Optimal “Anti-Bayesian” Parametric Pattern Classification Using Order Statistics Criteria. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 1–13. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Thomas, A., Oommen, B.J.: Optimal “Anti-Bayesian” Parametric Pattern Classification for the Exponential Family Using Order Statistics Criteria. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324, pp. 11–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Thomas, A., Oommen, B.J.: The Fundamental Theory of Optimal “Anti-Bayesian” Parametric Pattern Classification Using Order Statistics Criteria. Pattern Recognition 46, 376–388 (2013)zbMATHCrossRefGoogle Scholar
  4. 4.
    Oommen, B.J., Thomas, A.: Optimal Order Statistics-based “Anti-Bayesian” Parametric Pattern Classification for the Exponential Family. Pattern Recognition (accepted for publication, 2013)Google Scholar
  5. 5.
    Krishnaih, P.R., Rizvi, M.H.: A Note on Moments of Gamma Order Statistics. Technometrics 9, 315–318 (1967)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tadikamalla, P.R.: An Approximation to the Moments and the Percentiles of Gamma Order Statistics. Sankhya: The Indian Journal of Statistics 39, 372–381 (1977)Google Scholar
  7. 7.
    Young, D.H.: Moment Relations for Order Statistics of the Standardized Gamma Distribution and the Inverse Multinomial Distribution. Biometrika 58, 637–640 (1971)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anu Thomas
    • 1
  • B. John Oommen
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations