Graph Clustering through Attribute Statistics Based Embedding

  • Jaume Gibert
  • Ernest Valveny
  • Horst Bunke
  • Luc Brun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8047)


This work tackles the problem of graph clustering by an explicit embedding of graphs into vector spaces. We use an embedding methodology based on occurrence and co-occurrence statistics of representative elements of the node attributes. This embedding methodology has already been used for graph classification problems. In the current paper we investigate its applicability to the problem of clustering color-attributed graphs. The ICPR 2010 Graph Embedding Contest serves us as an evaluation framework. Explicit and implicit embedding methods are evaluated in terms of their ability to cluster object images represented as attributed graphs. We compare the attribute statistics based embedding methodology to explicit and implicit embedding techniques proposed by the contest participants and show improvements in some of the datasets. We then demonstrate further improvements by means of different vectorial metrics and kernel functions on the embedded graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color naming. J. Optical Society of America A 25(10), 2582–2593 (2008)CrossRefGoogle Scholar
  2. 2.
    Demirci, M.F., Osmanlıoğlu, Y., Shokoufandeh, A., Dickinson, S.: Efficient many-to-many feature matching under the l 1 norm. Computer Vision and Image Understanding 115(7), 976–983 (2011)CrossRefGoogle Scholar
  3. 3.
    Foggia, P., Vento, M.: Graph Embedding for Pattern Recognition. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 75–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node attribute statistics. Pattern Recognition 45(9), 3072–3083 (2012)CrossRefGoogle Scholar
  5. 5.
    Jain, A.K.: Data Clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)CrossRefGoogle Scholar
  6. 6.
    Jouili, S., Tabbone, S.: Graph Embedding Using Constant Shift Embedding. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 83–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Luqman, M.M., Lladós, J., Ramel, J.-Y., Brouard, T.: A Fuzzy-Interval Based Approach for Explicit Graph Embedding. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 93–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space Embedding. World Scientific (2010)Google Scholar
  9. 9.
    Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., Vert, J.-P.: Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines. Journal of Chemical Information and Modelling, 939–951 (2005)Google Scholar
  10. 10.
    Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jaume Gibert
    • 1
  • Ernest Valveny
    • 2
  • Horst Bunke
    • 3
  • Luc Brun
    • 1
  1. 1.École Nationale Supérieure d’Ingénieurs de CaenENSICAEN Université de Caen Basse-NormandieCaenFrance
  2. 2.Computer Vision CenterUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Institute for Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations