Wrong Roadway Detection for Multi-lane Roads

  • Junli Tao
  • Bok-Suk Shin
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8048)


The paper contributes to the detection of driving on the wrong side of the road by addressing in particular multi-lane road situations. We suggest a solution using video data of a single camera only for identifying the current lane of the ego-vehicle. GPS data are used for knowing defined constraints on driving directions for the current road.


Global Position System IEEE Conf Global Position System Data Intelligent Transportation System Stereo Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anonymous. Global status report on road safety (2009),
  2. 2.
    Anonymous. First assistance system in the fight against vehicles driving on the wrong side of the road (January 21, 2013),
  3. 3.
    Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Machine Vision Applications 23, 1–19 (2012)CrossRefGoogle Scholar
  4. 4.
    Bertozzi, M., Broggi, A.: GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. In: Proc. IEEE Conf. Image Processing, vol. 7, pp. 62–81 (1998)Google Scholar
  5. 5.
    Bétaille, D., Toledo-Moreo, R., Laneurit, J.: Making an enhanced map for lane location based services. In: Proc. IEEE Conf. Intelligent Transportation Systems, pp. 711–716 (2008)Google Scholar
  6. 6.
    Broggi, A., Bertozzi, M., Fascioli, A.: Self-calibration of a stereo vision system for automotive applications. In: Proc. IEEE Conf. Robotics Automation, vol. 4, pp. 3698–3703 (2001)Google Scholar
  7. 7.
    Deusch, H., Wiest, J., Reuter, S., Szczot, M., Konrad, M., Dietmayer, K.: A random finite set approach to multiple lane detection. Proc. Intelligent Transportation Systems, 270–275 (2012)Google Scholar
  8. 8.
    Du, J., Barth, M.J.: Next-generation automated vehicle location systems: Positioning at the lane level. IEEE Trans. Intelligent Transportation Systems 9, 48–57 (2008)CrossRefGoogle Scholar
  9. 9.
    Gupta, R.A., Snyder, W., Pitts, W.S.: Concurrent visual multiple lane detection for autonomous vehicles. In: Proc. IEEE Conf. Robotics Automation, pp. 2416–2422 (2010)Google Scholar
  10. 10.
    Jiang, R., Terauchi, M., Klette, R., Wang, S., Vaudrey, T.: Low-level image processing for lane detection and tracking. In: Proc. Arts and Technology. LNICST, vol. 30, pp. 190–197 (2010)Google Scholar
  11. 11.
    Jiang, Y., Gao, F., Xu, G.: Self-calibrated multiple-lane detection system. In: Proc. IEEE Position Location Navigation Symposium, pp. 1052–1056 (2010)Google Scholar
  12. 12.
    Michael, W., Aaron, E., Loren, K.: Consumer-grade global positioning system (GPS) accuracy and reliability. J. Forestry 103, 169–173 (2005)Google Scholar
  13. 13.
    Monteiro, G., Ribeiro, M., Marcos, J., Batista, J.: Wrongway drivers detection based on optical flow. In: Proc. IEEE Int. Conf. Image Processing, vol. 5, pp. 141–144 (2007)Google Scholar
  14. 14.
    Peyret, F., Laneurit, J., Bétaille, D.: A novel system using enhanced digital maps and WAAS for a lane-level positioning. Proc. World Congress Intelligent Transport Systems, 12 pages (2008)Google Scholar
  15. 15.
    Urmson, C., et al.: Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robotics 25, 425–466 (2008)CrossRefGoogle Scholar
  16. 16.
    Sekimoto, Y., Matsubayashi, Y., Yamada, H., Imai, R., Usui, T., Kanasugi, H.: Light weight lane positioning of vehicles using a smartphone GPS by monitoring the distance from the center line. In: Proc. IEEE Conf. Intelligent Transportation Systems, pp. 1561–1565 (2012)Google Scholar
  17. 17.
    Selloum, A., Bétaille, D., Le Carpentier, E., Peyret, F.: Lane level positioning using particle filtering. In: Proc. IEEE Conf. Intelligent Transportation Systems, pp. 1–6 (2009)Google Scholar
  18. 18.
    Selloum, A., Bétaille, D., Le Carpentier, E., Peyret, F.: Robustification of a map aided location process using road direction. In: Proc. IEEE Conf. Intelligent Transportation Systems, pp. 1504–1510 (2010)Google Scholar
  19. 19.
    Shin, B.-S., Klette, R.: Visual lane analysis - a concise review. Multimedia Imaging, MItech-TR-85. The University of Auckland (2013)Google Scholar
  20. 20.
    Wu, T., Ding, X.Q., Wang, S.J., Wang, K.Q.: Video object tracking using improved chamfer matching and condensation particle filter. In: SPIE Proc. Machine Vision Applications, vol. 6813, 4 pages (2008)Google Scholar
  21. 21.
    Zhao, K., Meuter, M., Nunn, C., Muller, D., Muller-Schneiders, S., Pauli, J.: A novel multi-lane detection and tracking system. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 1084–1089 (2012)Google Scholar
  22. 22.
    Zhaoxue, C., Pengfei, S.: Efficient method for camera calibration in traffic scenes. Electronics Letters 40, 368–369 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Junli Tao
    • 1
  • Bok-Suk Shin
    • 1
  • Reinhard Klette
    • 1
  1. 1.The .enpeda.. Project, Department of Computer ScienceThe University of AucklandNew Zealand

Personalised recommendations