Robustness of Point Feature Detection

  • Zijiang Song
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8048)

Abstract

This paper evaluates 2D feature detection methods with respect to invariance and efficiency properties. The studied feature detection methods are as follows: Speeded Up Robust Features, Scale Invariant Feature Transform, Binary Robust Invariant Scalable Keypoints, Oriented Binary Robust Independent Elementary Features, Features from Accelerated Segment Test, Maximally Stable Extremal Regions, Binary Robust Independent Elementary Features, and Fast Retina Keypoint. A long video sequence of traffic scenes is used for testing these feature detection methods. A brute-force matcher and Random Sample Consensus are used in order to analyse how robust these feature detection methods are with respect to scale, rotation, blurring, or brightness changes. After identifying matches in subsequent frames, RANSAC is used for removing inconsistent matches; remaining matches are taken as correct matches. This is the essence of our proposed evaluation technique. All the experiments use a proposed repeatability measure, defined as the ratio of the numbers of correct matches, and of all keypoints.

Keywords

Feature Detection Scale Invariant Feature Transform Correct Match Maximally Stable Extremal Region Random Sample Consensus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast retina keypoint. In: Proc. CVPR, pp. 510–517 (2012)Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: Proc. CVPR, pp. 553–560 (2006)Google Scholar
  5. 5.
    EISATS Website, http://www.mi.auckland.ac.nz/index.php (last visited in April 2013)
  6. 6.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: IEEE Int. Conf. ICCV, pp. 2548–2555 (2011)Google Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Luo, J., Oubong, G.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Processing, 143–152 (2009)Google Scholar
  9. 9.
    Martin, A.F., Robert, C.B.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. BMVC, pp. 384–396 (2002)Google Scholar
  11. 11.
    OpenCV Documentation, http://www.docs.opencv.org/index.html (last visited in April 2013)
  12. 12.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: Proc. ICCV, pp. 2564–2571 (2011)Google Scholar
  14. 14.
    Tombari, F., Salti, S., Di Stefano, L.: Performance evaluation of 3D keypoint detectors. Int. J. Computer Vision 102, 198–220 (2013)CrossRefGoogle Scholar
  15. 15.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations Trends Computer Graphics Vision 3, 177–280 (2008)CrossRefGoogle Scholar
  16. 16.
    Yu, T.-H., Woodford, O.J., Cipolla, R.: A performance evaluation of volumetric interest point detectors. Int. J. Computer Vision 102, 180–197 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zijiang Song
    • 1
  • Reinhard Klette
    • 1
  1. 1.The .enpeda.. Project, Department of Computer ScienceThe University of AucklandNew Zealand

Personalised recommendations