Abstract

Transportation or travel mode recognition plays an important role in enabling us to derive transportation profiles, e.g., to assess how eco-friendly our travel is, and to adapt travel information services such as maps to the travel mode. However, current methods have two key limitations: low transportation mode recognition accuracy and coarse-grained transportation mode recognition capability. In this paper, we propose a new method which leverages a set of wearable foot force sensors in combination with the use of a mobile phone’s GPS (FF+GPS) to address these limitations. The transportation modes recognised include walking, cycling, bus passenger, car passenger, and car driver. The novelty of our approach is that it provides a more fine-grained transportation mode recognition capability in terms of reliably differentiating bus passenger, car passenger and car driver for the first time. Result shows that compared to a typical accelerometer-based method with an average accuracy of 70%, the FF+GPS based method achieves a substantial improvement with an average accuracy of 95% when evaluated using ten individuals.

Keywords

Transportation Mode Recognition Foot force sensor GPS Accelerometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. N. D. o. Economic and P. D. Social Affairs.: World Urbanization Prospects: The 2009 Revision, United Nations (2010), http://esa.un.org/unpd/wup/Documents/WUP2009_Highlights_Final.pdf
  2. 2.
    Liu, J., Goraczko, M., Kansal, A., et al.: Subjective Sensing. In: NSF Workshop on Future Directions in Networked Sensing Systems: Fundamentals and Applications, NSF (2009)Google Scholar
  3. 3.
    Consolvo, S., Klasnja, P., McDonald, D.W., et al.: Flowers or a robot army?: encouraging awareness & activity with personal, mobile displays. In: 10th Int.Conf. on Ubiquitous Computing, pp. 54–63. ACM (2008)Google Scholar
  4. 4.
    Streitz, N., Nixon, P.: The disappearing computer. In: Communications of the ACM, vol. 48, pp. 32–35. ACM (2005)Google Scholar
  5. 5.
    Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., et al.: Activity identification using body-mounted sensors—a review of classification techniques. Physiological Measurement 30(4), R1 (2009)Google Scholar
  6. 6.
    Mun, M., Reddy, S., Shilton, K., et al.: PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. In: 7th Int. Conf. on Mobile Systems, Applications, and Services, pp. 55–68. ACM (2009)Google Scholar
  7. 7.
    Froehlich, J., Dillahunt, T., Klasnja, P., et al.: UbiGreen: investigating a mobile tool for tracking and supporting green transportation habits. In: 27th Int.Conf. on Human Factors in Computing Systems, pp. 1043–1052. ACM (2009)Google Scholar
  8. 8.
    CarbonHero, Carbon diem - Is that knowledge now? (2011), http://www.carbondiem.com
  9. 9.
    Kao, J., Lam, R., Pong, G., Talukdar, T., Wong, J.: Ecorio - Track Your Mobile Carbon Footprint (2008), http://ecorio.org
  10. 10.
    Agapie, E., Chen, G., Houston, D., Howard, E., Kim, J., Mun, M., Mondschein, A., Reddy, S., Rosario, R., Ryder, J.: Seeing Our Signals: Combining location traces and web-based models for personal discovery. In: 9th Workshop on Mobile Computing Systems and Applications, pp. 6–10. ACM (2008)Google Scholar
  11. 11.
    Subramanya, A., Raj, A., Bilmes, J., Fox, D.: Recognizing activities and spatial context using wearable sensors. In: 21st Conf. on Uncertainty in Artificial Intelligence, pp. 494–502. AUAI Press (2006)Google Scholar
  12. 12.
    Schutz, Y., Herren, R.: Assessment of speed of human locomotion using a differential satellite global positioning system. Medicine & Science in Sports & Exercise 32(3), 642–646 (2000)CrossRefGoogle Scholar
  13. 13.
    Witte, T., Wilson, A.: Accuracy of non-differential GPS for the determination of speed over ground. J. of Biomechanics 37, 1891–1898 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhang, K., Sun, M., Kevin Lester, D., Xavier Pi-Sunyer, F., Boozer, C.N., Longman, R.W.: Assessment of human locomotion by using an insole measurement system and artificial neural networks. J. of Biomechanics 38, 2276–2287 (2005)CrossRefGoogle Scholar
  15. 15.
    Wang, S., Chen, C., Ma, J.: Accelerometer based transportation mode recognition on mobile phones. In: Asia-pacific Conf. on Wearable Computing Systems, pp. 44–46. IEEE (2010)Google Scholar
  16. 16.
    Mizell, D.: Using gravity to estimate accelerometer orientation. In: 7th Int. Symposium on Wearable Computers, pp. 252–253. IEEE (2003)Google Scholar
  17. 17.
    Parkka, J., Cluitmans, L., Ermes, M.: Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree. IEEE Transactions on Information Technology in Biomedicine 14, 1211–1215 (2010)CrossRefGoogle Scholar
  18. 18.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: American Association for Artificial Intelligence, pp. 1541–1546. AAAI (2005)Google Scholar
  19. 19.
    Brezmes, T., Gorricho, J.-L., Cotrina, J.: Activity recognition from accelerometer data on a mobile phone. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 796–799. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. Int. J. of Robotics Research 26, 119–134 (2007)CrossRefGoogle Scholar
  21. 21.
    Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for geographic applications on the web. In: 17th Int.Conf. on World Wide Web, pp. 247–256. IW3C2 (2008)Google Scholar
  22. 22.
    Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: 6th Int.Conf. on Embedded Network Sensor Systems, pp. 337–350. ACM (2008)Google Scholar
  23. 23.
    Martín, H., Bernardos, A.M., Iglesias, J., Casar, J.R.: Activity logging using lightweight classification techniques in mobile devices. Personal and Ubiquitous Computing 16, 1–21 (2012)CrossRefGoogle Scholar
  24. 24.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2011)Google Scholar
  25. 25.
    Veltink, P.H., Liedtke, C., Droog, E., van der Kooij, H.: Ambulatory measurement of ground reaction forces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13, 423–427 (2005)CrossRefGoogle Scholar
  26. 26.
    Yeh, S., Chang, K.H., Wu, C.I., Chu, H., Hsu, J.Y.: GETA sandals: a footstep location tracking system. Personal and Ubiquitous Computing 11, 451–463 (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Zelun Zhang
    • 1
  • Stefan Poslad
    • 1
  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations