Advertisement

HealthyLife: An Activity Recognition System with Smartphone Using Logic-Based Stream Reasoning

  • Thang M. Do
  • Seng W. Loke
  • Fei Liu
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 120)

Abstract

This paper introduces a prototype we named HealthyLife which uses Answer set programming based Stream Reasoning (ASR) in combination with Artificial Neural Network (ANN) to automatically recognize users activities. HealthyLife aims to provide statistics about user habits and provide suggestions and alerts to the user to help the user maintain a healthy lifestyle. The advantages of HealthyLife over other projects are: (i) no restriction on how to carry the phone (such as in hand bag), (ii) detect complex activities and give recommendations, (iii) deal well with ambiguity when recognizing situations, and (iv) no additional devices are required.

Keywords

health promotion Answer Set Programming stream reasoning sensors smart phone activity recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: SIGKDD Explor. Newsl., vol. 12(2), pp. 74–82. ACM, New York (2010)Google Scholar
  2. 2.
  3. 3.
    Mattila, E., Parkka, J., Hermersdorf, M., Kaasinen, J., Vainio, J., Samposalo, K., Merilahti, J., Kolari, J., Kulju, M., Lappalainen, R., Korhonen, I.: Mobile Diary for Wellness Management–Results on Usage and Usability in Two User Studies. IEEE Transactions on Information Technology in Biomedicine 12(4), 501–512 (2008)CrossRefGoogle Scholar
  4. 4.
    Sunny, C., David, W.M., Tammy, T., Mike, Y.C., Jon, F., Beverly, H., Predrag, K., Anthony, L., Louis, L., Ryan, L., Ian, S., James, A.L.: Activity sensing in the wild: a field trial of ubifit garden. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems (CHI 2008), pp. 1797–1806. ACM, New York (2008)Google Scholar
  5. 5.
  6. 6.
    Alhamid, M.F., Saboune, J., Alamri, A., El Saddik, A.: Hamon: An activity recognition framework for health monitoring support at home. In: 2011 IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5 (May 2011)Google Scholar
  7. 7.
    Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 72–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 104–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Michael, G., Vladimir, L.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080 (1988)Google Scholar
  10. 10.
    Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6, 13:1–13:27 (2010)Google Scholar
  11. 11.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies, pp. 159–163. ACM (2005)Google Scholar
  13. 13.
    Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing 8, 36–66 (2012)CrossRefGoogle Scholar
  14. 14.
    Predrag, K., Wanda, P.: Healthcare in the pocket: Mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics 45(1), 184–198 (2012)CrossRefGoogle Scholar
  15. 15.
    Jayaraman, P.P., Sinha, A., Sherchan, W., Krishnaswamy, S., Zaslavsky, A., Haghighi, P.D., Loke, S., Do, M.T.: Here-n-Now: A Framework for Context-Aware Mobile Crowdsensing. In: Proceedings of the Tenth International Conference on Pervasive Computing, UK (June 2012)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Thang M. Do
    • 1
  • Seng W. Loke
    • 1
  • Fei Liu
    • 1
  1. 1.Department of CSCELa Trobe UniversityBundooraAustralia

Personalised recommendations