With increasing reliance on the location and orientation sensors in smartphones for not only augmented reality applications, but also for meeting government-mandated emergency response requirements, the reliability of these sensors is a matter of great importance. Previous studies measure the accuracy of the location sensing, typically GPS, in handheld devices including smartphones, but few studies do the same for the compass or gyroscope (gyro) sensors, especially in real-world augmented reality situations. In this study, we measure the reliability of both the location and orientation capabilities of three current generation smartphones: Apple iPhone 4 and iPhone 4s (iOS) phones, as well as a Samsung Galaxy Nexus (Android). Each is tested in three different orientation/body position combinations, and in varying environmental conditions, in order to obtain quantifiable information useful for understanding the practical limits of these sensors when designing applications that rely on them. Results show mean location errors of 10–30 m and mean compass errors around 10–30°, but with high standard deviations for both making them unreliable in many settings.


GPS location compass magnetometer augmented reality sensor fusion smartphones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azenkot, S., Ladner, R.E., Wobbrock, J.O.: Smartphone haptic feedback for nonvisual wayfinding. In: Computers and Accessibility, pp. 281–282. ACM (2011)Google Scholar
  2. 2.
    Blum, J.R., Bouchard, M., Cooperstock, J.R.: What’s around me? Spatialized audio augmented reality for blind users with a smartphone. In: Puiatti, A., Gu, T. (eds.) MobiQuitous 2011. LNICST, vol. 104, pp. 49–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Blunck, H., Kjærgaard, M.B., Toftegaard, T.S.: Sensing and Classifying Impairments of GPS Reception on Mobile Devices. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 350–367. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Constandache, I., Choudhury, R., Rhee, I.: Towards mobile phone localization without war-driving. In: INFOCOM, pp. 2321–2329. IEEE (2010)Google Scholar
  5. 5.
    Gotow, J.B., Zienkiewicz, K., White, J., Schmidt, D.C.: Addressing Challenges with Augmented Reality Applications on Smartphones. In: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. LNICST, vol. 48, pp. 129–143. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Jones, W.: A compass in every smartphone. IEEE Spectrum 47(2), 12–13 (2010)CrossRefGoogle Scholar
  7. 7.
    Kjærgaard, M., Langdal, J., Godsk, T., Toftkjær, T.: EnTracked: energy-efficient robust position tracking for mobile devices. In: Mobisys, pp. 221–234. ACM Press, NY (2009)CrossRefGoogle Scholar
  8. 8.
    Ozcan, R., Orhan, F., Demirci, M.F., Abul, O.: An Adaptive Smoothing Method for Sensor Noise in Augmented Reality Applications on Smartphones. In: Venkatasubramanian, N., Getov, V., Steglich, S. (eds.) Mobilware 2011. LNICST, vol. 93, pp. 209–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Priyantha, N., Miu, A., Balakrishnan, H., Teller, S.: The cricket compass for context-aware mobile applications. In: MobiCom, pp. 1–14. ACM, NY (2001)Google Scholar
  10. 10.
    Ruotsalainen, L., Kuusniemi, H., Chen, R.: Heading change detection for indoor navigation with a Smartphone camera. In: Indoor Positioning and Indoor Navigation, pp. 1–7. IEEE (September 2011)Google Scholar
  11. 11.
    Ruotsalainen, L., Kuusniemi, H., Chen, R.: Visual-aided Two-dimensional Pedestrian Indoor Navigation with a Smartphone. Global Positioning Systems 10(1), 11–18 (2011)CrossRefGoogle Scholar
  12. 12.
    Thiagarajan, A., Biagioni, J., Gerlich, T., Eriksson, J.: Cooperative transit tracking using smart-phones. In: Embedded Networked Sensor Systems, pp. 85–98. ACM, New York (2010)Google Scholar
  13. 13.
    Vaitl, C., Kunze, K., Lukowicz, P.: Does On-body Location of a GPS Receiver Matter? In: Body Sensor Networks, pp. 219–221. IEEE (June 2010)Google Scholar
  14. 14.
    von Watzdorf, S., Michahelles, F.: Accuracy of positioning data on smartphones. In: Workshop on Location and the Web, pp. 2:1–2:4. ACM, New York (2010)Google Scholar
  15. 15.
    Wing, M.: Consumer-Grade GPS Receiver Measurement Accuracy in Varying Forest Conditions. Research Journal of Forestry 5(2), 78–88 (2011)CrossRefGoogle Scholar
  16. 16.
    Zandbergen, P.: Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi and Cellular Positioning. Transactions in GIS 13, 5–25 (2009)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Jeffrey R. Blum
    • 1
  • Daniel G. Greencorn
    • 1
  • Jeremy R. Cooperstock
    • 1
  1. 1.McGill UniversityMontréalCanada

Personalised recommendations