Capacity-Constrained Network-Voronoi Diagram: A Summary of Results

  • KwangSoo Yang
  • Apurv Hirsh Shekhar
  • Dev Oliver
  • Shashi Shekhar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8098)

Abstract

Given a graph and a set of service centers, a Capacity Constrained Network-Voronoi Diagram (CCNVD) partitions the graph into a set of contiguous service areas that meet service center capacities and minimize the sum of the distances (min-sum) from graph-nodes to allotted service centers. The CCNVD problem is important for critical societal applications such as assigning evacuees to shelters and assigning patients to hospitals. This problem is NP-hard; it is computationally challenging because of the large size of the transportation network and the constraint that Service Areas (SAs) must be contiguous in the graph to simplify communication of allotments. Previous work has focused on honoring either service center capacity constraints (e.g., min-cost flow) or service area contiguity (e.g., Network Voronoi Diagrams), but not both. We propose a novel Pressure Equalizer (PE) approach for CCNVD to meet the capacity constraints of service centers while maintaining the contiguity of service areas. Experiments and a case study using post-hurricane Sandy scenarios demonstrate that the proposed algorithm has comparable solution quality to min-cost flow in terms of min-sum; furthermore it creates contiguous service areas, and significantly reduces computational cost.

Keywords

Capacity Constrained Network Voronoi Diagram Pressure Equalization Spatial Network Partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ABC News: Hurricane sandy’s aftermath: Long lines at gas stations (2012), http://goo.gl/omQ62 (retrieved March 2013)
  2. 2.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19(17), 248–264 (1972)MATHCrossRefGoogle Scholar
  3. 3.
    Tomizawa, N.: On some techniques useful for solution of transportation network problems. Networks 2(17), 173–194 (1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Daskin, M.: Network and discrete location: models, algorithms, and applications. Wiley-Interscience series in discrete mathematics and optimization. Wiley (1995)Google Scholar
  5. 5.
    Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41(2), 338–350 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algorithm. Operations Research 22(1), 1–29 (1997)MathSciNetGoogle Scholar
  7. 7.
    Ahuja, R., Magnanti, T., Orlin, J.: Network flows: theory, algorithms, and applications. Prentice Hall (1993)Google Scholar
  8. 8.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. A. Springer (2003)Google Scholar
  9. 9.
    Korte, B., Vygen, J.: Combinatorial Optimization. Algorithms and Combinatorics. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1-2), 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics 5(1), 32–38 (1957)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by successive approximation. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 7–18. ACM (1987)Google Scholar
  13. 13.
    Frank, A.: Connections in combinatorial optimization, vol. 38. Oxford Univ. Pr. (2011)Google Scholar
  14. 14.
    Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley (2011)Google Scholar
  15. 15.
    Johnson, D.S., McGeoch, C.C.: Network flows and matching: first DIMACS implementation challenge, vol. 12. Amer. Mathematical Society (1993)Google Scholar
  16. 16.
    Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 15(3), 430–466 (1990)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Management Science 14(3), 205–220 (1967)MATHCrossRefGoogle Scholar
  18. 18.
    Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. Journal of the ACM (JACM) 36(4), 873–886 (1989)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams, vol. 501. Wiley (2009)Google Scholar
  20. 20.
    Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Computational Methods. Statistics in Practice. Wiley (2012)Google Scholar
  21. 21.
    Erwig, M.: The graph voronoi diagram with applications. Networks 36(3), 156–163 (2000)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams: Concepts, computational methods, and applications. International Journal of Geographical Information Science 22(9), 965–994 (2008)CrossRefGoogle Scholar
  23. 23.
    Győri, E.: On division of graphs to connected subgraphs. In: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), vol. 1, pp. 485–494 (1976)Google Scholar
  24. 24.
    Lovász, L.: A homology theory for spanning trees of a graph. Acta Mathematica Academiae Scientiarum Hungarica 30(3-4), 241–251 (1993)CrossRefGoogle Scholar
  25. 25.
    Győri, E.: Partition conditions and vertex-connectivity of graphs. Combinatorica 1(3), 263–273 (1981)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics 10(2), 139–153 (1985)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Diwan, A.A.: Partitioning into connected parts (slide 7) in graph partitioning problems. In: Research Promotion Workshop on Introduction to Graph and Geometric Algorithms (January 2011), http://goo.gl/b8fTN
  28. 28.
    Barth, D., Fournier, H.: A degree bound on decomposable trees. Discrete Mathematics 306(5), 469–477 (2006)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM (JACM) 34(3), 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    OpenStreetMap, http://goo.gl/Hso0 (retrieved January 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • KwangSoo Yang
    • 1
  • Apurv Hirsh Shekhar
    • 1
  • Dev Oliver
    • 1
  • Shashi Shekhar
    • 1
  1. 1.Department of Computer ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations