Cost Models for Nearest Neighbor Query Processing over Existentially Uncertain Spatial Data

  • Elias Frentzos
  • Nikos Pelekis
  • Nikos Giatrakos
  • Yannis Theodoridis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8098)


A major challenge posed by real-world applications involving spatial information deals with the uncertainty inherent in the data. One type of uncertainty in spatial objects may come from their existence, which is expressed by a probability accompanying the spatial value of an object reflecting the confidence of the object’s existence. A challenging query type over existentially uncertain data is the search of the Nearest Neighbour (NN), as the likelihood of an object to be the NN of the query object does not only depend on its distances from other objects, but also from their existence. In this paper, we present exact and approximate statistical methodologies for supporting cost models for Probabilistic Thresholding NN (PTNN) queries that deal with arbitrarily distributed data points and existential uncertainty, with the aid of appropriate novel histograms, sampling and statistical approximations. Our cost model can be also modified in order to support Probabilistic Ranking NN (PRNN) queries with the aid of sampling. The accuracy of our approaches is exhibited through extensive experimentation on synthetic and real datasets.


Spatial Databases Existential Uncertain Data Nearest Neighbor Query Processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity Estimation in Spatial Databases. In: Proceedings of the ACM SIGMOD Int’l Conference on Management of Data (SIGMOD 1999), pp. 13–24 (1999)Google Scholar
  2. 2.
    Balakrishnan, N., Rao, C.R. (eds.): Order Statistics: Applications. Elsevier, Amsterdam (1998)zbMATHGoogle Scholar
  3. 3.
    Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic Spatial Queries on Existentially Uncertain Data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Frentzos, E., Pelekis, N., Theodoridis, Y.: Cost Models and Efficient Algorithms on Existentially Uncertain Spatial Data. In: Proceedings of the 12th Panhellenic Conference in Informatics (PCI 2008), Samos, Greece (2008)Google Scholar
  5. 5.
    Frentzos, E., Gratsias, K., Theodoridis, Y.: On the Effect of Location Uncertainty in Spatial Querying. IEEE Trans. Knowl. Data Eng. 21(3), 366–383 (2009)CrossRefGoogle Scholar
  6. 6.
    Hjaltason, G., Samet, H.: Distance Browsing in Spatial Databases. ACM Transactions in Database Systems 24(2), 265–318 (1999)CrossRefGoogle Scholar
  7. 7.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: Rtrees: Theory and Applications. Springer (2005)Google Scholar
  8. 8.
    Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic Trajectories Modeling and Analysis. ACM Computing Surveys (2013)Google Scholar
  9. 9.
    Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB), Seoul, Korea (2006)Google Scholar
  10. 10.
    Stanoi, I., Agrawal, D., Abbadi, A.: Reverse Nearest Neighbor Queries for Dynamic Databases. In: Proceedings of the SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (2000)Google Scholar
  11. 11.
    Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Trans. Knowledge and Data Eng. 16(10), 1169–1184 (2004)CrossRefGoogle Scholar
  12. 12.
    Weisstein, E.W.: Uniform Product Distribution. From MathWorld. A Wolfram Web ResourceGoogle Scholar
  13. 13.
    Yiu, M., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient Evaluation of Probabilistic Advanced Spatial Queries on Existentially Uncertain Data. IEEE Trans. Knowledge and Data Eng. 21(1) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elias Frentzos
    • 1
  • Nikos Pelekis
    • 2
  • Nikos Giatrakos
    • 3
  • Yannis Theodoridis
    • 1
  1. 1.Department of InformaticsUniversity of PiraeusPiraeusGreece
  2. 2.Department of Statistics & Insurance ScienceUniversity of PiraeusPiraeusGreece
  3. 3.Dept. of Electronics & Computer EngineeringTechnical University of CreteCreteGreece

Personalised recommendations