Advertisement

Reverse-k-Nearest-Neighbor Join Processing

  • Tobias Emrich
  • Hans-Peter Kriegel
  • Peer Kröger
  • Johannes Niedermayer
  • Matthias Renz
  • Andreas Züfle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8098)

Abstract

A reverse k-nearest neighbour (RkNN) query determines the objects from a database that have the query as one of their k-nearest neighbors. Processing such a query has received plenty of attention in research. However, the effect of running multiple RkNN queries at once (join) or within a short time interval (bulk/group query) has only received little attention so far. In this paper, we analyze different types of RkNN joins and discuss possible solutions for solving the non-trivial variants of this problem, including self and mutual pruning strategies. The results indicate that even with a moderate number of query objects (|R| ≈ 0.0007|S|), the performance (CPU) of the state-of-the-art mutual pruning based RkNN-queries deteriorates and hence algorithms based on self pruning without precomputation produce better results. During an extensive performance analysis we provide evaluation results showing the IO and CPU performance of the compared algorithms for a wide range of different setups and suggest appropriate query algorithms for specific scenarios.

Keywords

Leaf Node Range Query Priority Queue Query Point Cache Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernecker, T., Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Zhang, S., Züfle, A.: Inverse queries for multidimensional spaces. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 330–347. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors, vol. C-22(11) (1973)Google Scholar
  3. 3.
    Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. SIGMOD (1999)Google Scholar
  4. 4.
    Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neighbor graph. In: Proc. IPCR (2004)Google Scholar
  5. 5.
    Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking outliers using symmetric neighborhood relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Korn, F., Muthukrishnan, S.: Influenced sets based on reverse nearest neighbor queries. In: Proc. SIGMOD (2000)Google Scholar
  7. 7.
    Yang, C., Lin, K.-I.: An index structure for efficient reverse nearest neighbor queries. In: Proc. ICDE (2001)Google Scholar
  8. 8.
    Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In: Proc. SIGMOD (2006)Google Scholar
  9. 9.
    Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic databases. In: Proc. DMKD (2000)Google Scholar
  10. 10.
    Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest neighbor queries. In: Proc. CIKM (2003)Google Scholar
  11. 11.
    Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbitrary dimensionality. In: Proc. VLDB (2004)Google Scholar
  12. 12.
    Emrich, T., Kriegel, H.-P., Kröger, P., Niedermayer, J., Renz, M., Züfle, A.: A mutual-pruning approach for RKNN join processing. Proc. BTW (2013)Google Scholar
  13. 13.
    Wu, W., Yang, F., Chan, C.-Y., Tan, K.: FINCH: Evaluating reverse k-nearest-neighbor queries on location data. In: Proc. VLDB (2008)Google Scholar
  14. 14.
    Böhm, C., Krebs, F.: The k-nearest neighbor join: Turbo charging the KDD process. In: KAIS, vol. 6(6) (2004)Google Scholar
  15. 15.
    Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial databases. In: Proc. SSDBM (2004)Google Scholar
  16. 16.
    Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional KNN joins with incremental updates. Geoinformatica 14(1) (2010)Google Scholar
  17. 17.
    Tao, Y., Yiu, M.L., Mamoulis, N.: Reverse nearest neighbor search in metric spaces. IEEE TKDE 18(9) (2006)Google Scholar
  18. 18.
    Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: Efficiently processing reverse k nearest neighbors queries. In: Proc. ICDE (2011)Google Scholar
  19. 19.
    Achtert, E., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Reverse k-nearest neighbor search in dynamic and general metric databases. In: Proc. EDBT (2009)Google Scholar
  20. 20.
    Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A., Katzdobler, A.: Reverse k-nearest neighbor search based on aggregate point access methods. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 444–460. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Xia, C., Hsu, W., Lee, M.L., Joxan, J., Xia, C., Hsu, W.: Erknn: efficient reverse k-nearest neighbors retrieval with local knn-distance estimation. In: Proc. CIKM (2005)Google Scholar
  22. 22.
    Achtert, E., Hettab, A., Kriegel, H.-P., Schubert, E., Zimek, A.: Spatial outlier detection: Data, algorithms, visualizations. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 512–516. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 443. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On optimal pruning of mbrs. In: Proc. SIGMOD (2010)Google Scholar
  25. 25.
    Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: On the impact of flash SSDS on spatial indexing. In: Proc. DaMoN (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tobias Emrich
    • 1
  • Hans-Peter Kriegel
    • 1
  • Peer Kröger
    • 1
  • Johannes Niedermayer
    • 1
  • Matthias Renz
    • 1
  • Andreas Züfle
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität MünchenGermany

Personalised recommendations