On MITL and Alternating Timed Automata

  • Thomas Brihaye
  • Morgane Estiévenart
  • Gilles Geeraerts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8053)

Abstract

One clock alternating timed automata (OCATA) have been recently introduced as natural extension of (one clock) timed automata to express the semantics of MTL [12]. We consider the application of OCATA to problem of model-checking MITL formulas (a syntactic fragment of MTL) against timed automata. We introduce a new semantics for OCATA where, intuitively, clock valuations are intervals instead of single values in ℝ. Thanks to this new semantics, we show that we can bound the number of clock copies that are necessary to allow an OCATA to recognise the models of an MITL formula. Equipped with this technique, we propose a new algorithm to translate an MITL formula into a timed automaton, and we sketch several ideas to define new model checking algorithms for MITL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed automata Technical report arXiv.org. http://arxiv.org/abs/1304.2814
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)Google Scholar
  6. 6.
    De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algorithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Henzinger, T.A.: The temporal specification and verification of real-time systems. PhD thesis, Standford University (1991)Google Scholar
  9. 9.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  10. 10.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput. Log. 9(2) (2008)Google Scholar
  11. 11.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS 2005. IEEE (2005)Google Scholar
  13. 13.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)Google Scholar
  14. 14.
    Pandya, P.K., Shah, S.S.: The Unary Fragments of Metric Interval Temporal Logic: Bounded versus Lower Bound Constraints. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 77–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Raskin, J.-F., Schobbens, P.-Y.: The Logic of Event Clocks – Decidability, Complexity and Expressiveness. J. Automata, Languages and Combinatorics 4(3) (1999)Google Scholar
  16. 16.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS 1986. IEEE (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Morgane Estiévenart
    • 1
  • Gilles Geeraerts
    • 2
  1. 1.Département de MathématiquesUniversité de Mons (UMONS)Belgium
  2. 2.Département d’InformatiqueUniversité Libre de Bruxelles (U.L.B.)Belgium

Personalised recommendations