Advertisement

Confluence Reduction for Markov Automata

  • Mark Timmer
  • Jaco van de Pol
  • Mariëlle I. A. Stoelinga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8053)

Abstract

Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models generated by such specifications. We therefore introduce confluence reduction for Markov automata, a powerful reduction technique to keep these models small. We define the notion of confluence directly on Markov automata, and discuss how to syntactically detect confluence on the MAPA language as well. That way, Markov automata generated by MAPA specifications can be reduced on-the-fly while preserving divergence-sensitive branching bisimulation. Three case studies demonstrate the significance of our approach, with reductions in analysis time up to an order of magnitude.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc. (1994)Google Scholar
  2. 2.
    Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2(2), 93–122 (1984)CrossRefGoogle Scholar
  3. 3.
    Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction for probabilistic branching time. In: QAPL. ENTCS, vol. 153(2), pp. 97–116 (2006)Google Scholar
  4. 4.
    Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic systems. In: QEST, pp. 230–239 (2004)Google Scholar
  5. 5.
    Belinfante, A., Rensink, A.: Publishing your prototype tool on the web: PUPTOL, a framework. Technical Report TR-CTIT-13-15, Centre for Telematics and Information Technology, University of Twente (2013)Google Scholar
  6. 6.
    Blom, S.C.C.: Partial τ-confluence for efficient state space generation. Technical Report SEN-R0123, CWI, Amsterdam (2001)Google Scholar
  7. 7.
    Blom, S.C.C., van de Pol, J.C.: State space reduction by proving confluence. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.I.A.: Architectural dependability evaluation with arcade. In: DSN, pp. 512–521 (2008)Google Scholar
  9. 9.
    Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Transactions on Dependable and Secure Compututing 7(2), 128–143 (2010)CrossRefGoogle Scholar
  10. 10.
    Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. The Computer Journal 54(5), 754–775 (2011)CrossRefGoogle Scholar
  11. 11.
    D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic programs. In: QEST, pp. 240–249 (2004)Google Scholar
  12. 12.
    Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 21–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351 (2010)Google Scholar
  15. 15.
    Fokkink, W., Pang, J.: Simplifying Itai-Rodeh leader election for anonymous rings. In: AVoCS. ENTCS, vol. 128(6), pp. 53–68 (2005)Google Scholar
  16. 16.
    Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Hansen, H., Timmer, M.: A comparison of confluence and ample sets in probabilistic and non-probabilistic branching time. In: TCS (to appear, 2013)Google Scholar
  19. 19.
    Hartmanns, A., Timmer, M.: On-the-fly confluence detection for statistical model checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 337–351. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Katoen, J.-P.: GSPNs revisited: Simple semantics and new analysis algorithms. In: ACSD, pp. 6–11 (2012)Google Scholar
  21. 21.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  22. 22.
    Timmer, M.: SCOOP: A tool for symbolic optimisations of probabilistic processes. In: QEST, pp. 149–150 (2011)Google Scholar
  23. 23.
    Timmer, M., Katoen, J.-P., van de Pol, J.C., Stoelinga, M.I.A.: Efficient modelling and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Timmer, M., Stoelinga, M.I.A., van de Pol, J.C.: Confluence reduction for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 311–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Timmer, M., van de Pol, J.C., Stoelinga, M.I.A.: Confluence reduction for Markov automata (extended version). Technical Report TR-CTIT-13-14, Centre for Telematics and Information Technology, University of Twente (2013)Google Scholar
  26. 26.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 491–515. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark Timmer
    • 1
  • Jaco van de Pol
    • 1
  • Mariëlle I. A. Stoelinga
    • 1
  1. 1.Formal Methods and Tools, Faculty of EEMCSUniversity of TwenteThe Netherlands

Personalised recommendations