Incremental Language Inclusion Checking for Networks of Timed Automata

  • Willibald Krenn
  • Dejan Ničković
  • Loredana Tec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8053)

Abstract

Checking the language inclusion between two models is a fundamental problem arising in application areas such as formal verification or refinement in top-down design. We propose an incremental procedure for checking the language inclusion between two real-time specifications, modeled as networks of deterministic timed automata, where the two specifications are equivalent up to one component. For such classes of systems we aim to improve the efficiency of the language inclusion check by exploiting the compositional nature of the problem and avoiding the explicit parallel composition of the timed automata in the network. We first develop a generic procedure that gives freedom to specific implementation choices. We then propose an instantiation of the procedure that is based on bounded model checking techniques. We illustrate the application of our approach in a case study and discuss promising experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Uml in action: a two-layered interpretation for testing. ACM SIGSOFT Software Engineering Notes 36(1), 1–8 (2011)CrossRefGoogle Scholar
  2. 2.
    Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants – model-based mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alur, R., Itai, A., Kurshan, R.P., Yannakakis, M.: Timing verification by successive approximation. Inf. Comput. 118(1), 142–157 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded model checking for timed systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Badban, B., Lange, M.: Exact incremental analysis of timed automata with an SMT-solver. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 177–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P., Weissenbacher, G.: Mutation-based test case generation for simulink models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    He, N., Rümmer, P., Kroening, D.: Test-case generation for embedded simulink via formal concept analysis. In: DAC, pp. 224–229 (2011)Google Scholar
  11. 11.
    Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in System Design 34(3), 238–304 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152 (1997)MATHCrossRefGoogle Scholar
  13. 13.
    Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification of timed automata via satisfiability checking. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 225–244. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Schlick, R., Herzner, W., Jöbstl, E.: Fault-based generation of test cases from UML-models – approach and some experiences. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 270–283. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Steiner, W.: An evaluation of smt-based schedule synthesis for time-triggered multi-hop networks. In: RTSS, pp. 375–384 (2010)Google Scholar
  16. 16.
    Tretmans, J.: Model based testing with labelled transition systems. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Willibald Krenn
    • 1
  • Dejan Ničković
    • 1
  • Loredana Tec
    • 1
  1. 1.AIT Austrian Institute of Technology GmbHViennaAustria

Personalised recommendations