Positive Fragments of Coalgebraic Logics

  • Adriana Balan
  • Alexander Kurz
  • Jiří Velebil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8089)


Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond.

In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn’s result from Kripke frames to coalgebras of weak-pullback preserving functors.

For possible application to fixed-point logics, it is note-worthy that the positive coalgebraic logic of a functor is given not by all predicate-liftings but by all monotone predicate liftings.


coalgebraic logic duality positive modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S.: A Cook’s Tour of the Finitary Non-Well-Founded Sets. In: Artemov, S., Barringer, H., d’Avila Garcez, A., Lamb, L.C., Woods, J. (eds.) We Will Show Them: Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18. College Publications (2005), http://arxiv.org/pdf/1111.7148.pdf
  2. 2.
    Adámek, J., Herrlich, J., Strecker, G.E.: Abstract and Concrete Categories. John Wiley & Sons (1990)Google Scholar
  3. 3.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Math. Soc. LNS, vol. 189. Cambridge Univ. Press (1994)Google Scholar
  4. 4.
    Balan, A., Kurz, A.: Finitary Functors: From Set to Preord and Poset. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bílková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 115–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theor. Comput. Sci., vol. 53. Cambridge Univ. Press (2002)Google Scholar
  7. 7.
    Bonsangue, M.M., Kurz, A.: Presenting Functors by Operations and Equations. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 172–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bourke, J.: Codescent Objects in 2-Dimensional Universal Algebra, PhD Thesis, University of Sydney (2010)Google Scholar
  9. 9.
    Carboni, A., Street, R.: Order Ideals in Categories. Pacific J. Math. 124, 275–288 (1986)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dunn, J.M.: Positive Modal Logic. Studia Logica 55, 301–317 (1995)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Guitart, R.: Rélations et Carrés Exacts. Ann. Sci. Math. Qué. 4, 103–125 (1980)MathSciNetMATHGoogle Scholar
  12. 12.
    Johnstone, P.T.: Stone Spaces. Cambridge Univ. Press (1982)Google Scholar
  13. 13.
    Johnstone, P.T.: Vietoris Locales and Localic Semilattices. In: Hoffmann, R.E., Hofmann, K.H. (eds.) Continuous Lattices and their Applications. LNPAM, vol. 101, pp. 155–180. Marcel Dekker (1985)Google Scholar
  14. 14.
    Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Math. Soc. LNS, vol. 64. Cambridge Univ. Press (1982), Reprint as: Theory Appl. Categ. 10 (2005)Google Scholar
  15. 15.
    Kelly, G.M.: Structures Defined by Finite Limits in the Enriched Context. I. Cah. Topol. Géom. Différ. Catég. 23, 3–42 (1982)MATHGoogle Scholar
  16. 16.
    Kelly, G.M.: Elementary Observations on 2-Categorical Limits. Bull. Austral. Math. Soc. 39, 301–317 (1989)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kelly, G.M., Lack, S.: Finite Product-Preserving-Functors, Kan Extensions and Strongly-Finitary 2-Monads. Appl. Categ. Struct. 1, 85–94 (1993)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kurz, A., Leal, R.: Equational Coalgebraic Logic. ENTCS 249, 333–356 (2009)Google Scholar
  19. 19.
    Kurz, A., Rosický, J.: Strongly Complete Logics for Coalgebras, Logic. Meth. Comput. Sci. 8, 1–32 (2012)Google Scholar
  20. 20.
    Kurz, A., Velebil, J.: Enriched Logical Connections. Appl. Categ. Struct (2011) (online first)Google Scholar
  21. 21.
    Kurz, A., Velebil, J.: Quasivarieties and Varieties of Ordered Algebras: Regularity and exactness (February 2013), http://www.cs.le.ac.uk/people/akurz/pos_ua.pdf (submitted)
  22. 22.
    Lack, S., Rosický, J.: Notions of Lawvere Theory. Appl. Categ. Struct. 19, 363–391 (2011)MATHCrossRefGoogle Scholar
  23. 23.
    Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer (1971)Google Scholar
  24. 24.
    Palmigiano, A.: A Coalgebraic View on Positive Modal Logic. Theor. Comput. Sci. 327, 175–195 (2004)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pattinson, D.: Coalgebraic Modal Logic: Soundness, Completeness and Decidability of Local Consequence. Theor. Comput. Sci. 309, 177–193 (2003)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Robinson, E.: Powerdomains, Modalities and the Vietoris Monad. Comp. Lab. Tech. Report. 98, Univ. Cambridge (1986)Google Scholar
  27. 27.
    Schröder, L.: Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Velebil, J., Kurz, A.: Equational Presentations of Functors and Monads. Math. Struct. Comput. Sci. 21, 363–381 (2011)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach. Theor. Comput. Sci. 221, 271–293 (1999)MATHCrossRefGoogle Scholar
  30. 30.
    Winskel, G.: On Powerdomains and Modality. Theor. Comput. Sci. 36, 127–137 (1985)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adriana Balan
    • 1
  • Alexander Kurz
    • 2
  • Jiří Velebil
    • 3
  1. 1.University Politehnica of BucharestRomania
  2. 2.University of LeicesterUK
  3. 3.Faculty of Electrical EngineeringCzech Technical University in PragueCzech Republic

Personalised recommendations