Abstract

A simple algorithm for checking language equivalence of finite automata consists in trying to compute a bisimulation that relates them. This is possible because language equivalence can be characterised coinductively, as the largest bisimulation

References

  1. 1.
    Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: POPL, pp. 457–468. ACM (2013)Google Scholar
  2. 2.
    Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Technical Report 114, Cornell University (December 1971)Google Scholar
  3. 3.
    Klin, B.: Bialgebras for structural operational semantics: An introduction. TCS 412(38), 5043–5069 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Milner, R.: Communication and Concurrency. Prentice-Hall (1989)Google Scholar
  5. 5.
    Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Computer Science 8, 447–479 (1998)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset construction, coalgebraically. In: Proc. FSTTCS. LIPIcs, vol. 8, pp. 272–283. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  7. 7.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Damien Pous
    • 1
  1. 1.CNRS, LIPENS LyonFrance

Personalised recommendations