Simulations and Bisimulations for Coalgebraic Modal Logics

  • Daniel Gorín
  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8089)


Simulations serve as a proof tool to compare the behaviour of reactive systems. We define a notion of Λ-simulation for coalgebraic modal logics, parametric in the choice of a set Λ of monotone predicate liftings for a functor T. That is, we obtain a generic notion of simulation that can be flexibly instantiated to a large variety of systems and logics, in particular in settings that semantically go beyond the classical relational setup, such as probabilistic, game-based, or neighbourhood-based systems. We show that this notion is adequate in several ways: i) Λ-simulations preserve truth of positive formulas, ii) for Λ a separating set of monotone predicate liftings, the associated notion of Λ-bisimulation corresponds to T-behavioural equivalence (moreover, this correspondence extends to the respective finite-lookahead counterparts), and iii) Λ-bisimulations remain sound when taken up to difunctional closure. In essence, we arrive at a modular notion of equivalence that, when used with a separating set of monotone predicate liftings, coincides with T-behavioural equivalence regardless of whether T preserves weak pullbacks. That is, for finitary set-based coalgebras, Λ-bisimulation works under strictly more general assumptions than T-bisimulation in the sense of Aczel and Mendler.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Enqvist, S.: Homomorphisms of coalgebras from predicate liftings. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 126–140. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Hansen, H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Coalgebraic Methods in Computer Science (CMCS 2004). ENTCS, vol. 106, pp. 121–143. Elsevier (2004)Google Scholar
  4. 4.
    Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  5. 5.
    Kurz, A., Leal, R.A.: Modalities in the Stone age: A comparison of coalgebraic logics. Theor. Comput. Sci. 430, 88–116 (2012)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Levy, P.B.: Similarity quotients as final coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Marti, J., Venema, Y.: Lax extensions of coalgebra functors. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 150–169. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 2004 (2002)MathSciNetGoogle Scholar
  11. 11.
    Pauly, M.: Bisimulation for general non-normal modal logic (1999) (unpublished Manuscript)Google Scholar
  12. 12.
    Pauly, M.: Logic for social software. Ph.D. thesis, Universiteit van Amsterdam (2001)Google Scholar
  13. 13.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10, 13:1–13:33 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. Theoret. Comput. Sci. 390(2-3), 230–247 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schröder, L., Pattinson, D.: Coalgebraic correspondence theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 328–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Sokolova, A.: Probabilistic systems coalgebraically: A survey. Theoret. Comput. Sci. 412, 5095–5110 (2011)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Gorín
    • 1
  • Lutz Schröder
    • 1
  1. 1.Department of Computer ScienceUniversität Erlangen-NürnbergGermany

Personalised recommendations