Advertisement

High-Level Counterexamples for Probabilistic Automata

  • Ralf Wimmer
  • Nils Jansen
  • Andreas Vorpahl
  • Erika Ábrahám
  • Joost-Pieter Katoen
  • Bernd Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8054)

Abstract

Providing compact and understandable counterexamples for violated system properties is an essential task in model checking. Existing works on counterexamples for probabilistic systems so far computed either a large set of system runs or a subset of the system’s states, both of which are of limited use in manual debugging. Many probabilistic systems are described in a guarded command language like the one used by the popular model checker PRISM. In this paper we describe how a minimal subset of the commands can be identified which together already make the system erroneous. We additionally show how the selected commands can be further simplified to obtain a well-understandable counterexample.

Keywords

Model Check Mixed Integer Linear Program Mixed Integer Linear Program Formulation Reachability Property Probabilistic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bobaru, M.G., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction refinement for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 310–326. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)CrossRefGoogle Scholar
  7. 7.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of counterexamples for stochastic model checking. IEEE Trans. on Software Engineering 36(1), 37–60 (2010)CrossRefGoogle Scholar
  9. 9.
    Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time Markov chains using bounded model checking. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples in probabilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.: Hierarchical counterexamples for discrete-time markov chains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical subsystems for discrete-time markov models. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Wimmer, R., Becker, B., Jansen, N., Ábrahám, E., Katoen, J.P.: Minimal critical subsystems as counterexamples for ω-regular DTMC properties. In: Proc. of MBMV, 169–180. Verlag Dr. Kovač (2012)Google Scholar
  14. 14.
    Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal counterexamples for refuting ω-regular properties of Markov decision processes. Reports of SFB/TR 14 AVACS 88 (2012) ISSN: 1860-9821, http://www.avacs.org
  15. 15.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)Google Scholar
  16. 16.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995), available as Technical Report MIT/LCS/TR-676Google Scholar
  17. 17.
    Segala, R.: A compositional trace-based semantics for probabilistic automata. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  18. 18.
    Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of programs. Communications of the ACM 18(8), 453–457 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. Science of Computer Programming 28(2-3), 171–192 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co. Ltd. (1979)Google Scholar
  22. 22.
    Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2012), http://www.gurobi.com
  25. 25.
    Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.: High-level counterexamples for probabilistic automata (extended version). Technical Report arXiv:1305.5055 (2013), http://arxiv.org/abs/1305.5055
  26. 26.
    Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the IEEE 802.11 wireless local area network protocol. In: Hermanns, H., Segala, R. (eds.) PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 169–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  28. 28.
    Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proc. of QEST, pp. 203–204. IEEE CS Press (2012)Google Scholar
  29. 29.
    Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal of Algorithms 15(1), 441–460 (1990)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Stoelinga, M.: Fun with FireWire: A comparative study of formal verification methods applied to the IEEE 1394 Root Contention Protocol. Formal Aspects of Computing 14(3), 328–337 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ralf Wimmer
    • 1
  • Nils Jansen
    • 2
  • Andreas Vorpahl
    • 2
  • Erika Ábrahám
    • 2
  • Joost-Pieter Katoen
    • 2
  • Bernd Becker
    • 1
  1. 1.Albert-Ludwigs-University FreiburgGermany
  2. 2.RWTH Aachen UniversityGermany

Personalised recommendations