Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g

  • Daniel Happ
  • Philipp Reinecke
  • Katinka Wolter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8054)

Abstract

In this paper we derive fault-impact models for wireless network traffic as it could be used in the control traffic for smart grid nodes. We set up experiments using a testbed with 116 nodes which uses the protocol IEEE 802.11g. We develop models for packet loss, the length of consecutive packet loss or non-loss as well as for packet transmission time. The latter is a known challenge and we propose a sampling technique that benefits from the wireless as well as wired connections between the nodes in the testbed. The data obtained shows similarity with previous measurements. However, we progress the state of the art in two ways: we show measurements of packet transmission times and fit models to those and we provide some more detailed insight in the data. We find that with increasing link quality, the distributions of lossy and loss-free periods show major fluctuation. It is shown that in those cases, phase-type distributions can approximate the data better than traditional Gilbert models. In addition, the medium access time is also found to be approximated well with a PH distribution.

Keywords

Mean Square Error Packet Loss Smart Grid Packet Delivery Ratio Packet Error Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguayo, D., Bicket, J., Biswas, S., Judd, G., Morris, R.: Link-level measurements from an 802.11b mesh network. In: Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2004, pp. 121–132. ACM, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Arauz, J., Krishnamurthy, P.: Markov modeling of 802.11 channels. In: Vehicular Technology Conference, vol. 2, pp. 771–775. IEEE Computer Society (2003)Google Scholar
  3. 3.
    Billingsley, P.: Statistical Inference for Markov Processes. The University of Chicago Press (1961)Google Scholar
  4. 4.
    Blywis, B., Günes, M., Juraschek, F., Hahm, O.: Properties and Topology of the DES-Testbed. Technical Report TR-B-11-02, Freie Universität Berlin (2011), http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000009836
  5. 5.
    Carvalho, L., Angeja, J., Navarro, A.: A new packet loss model of the IEEE 802.11g wireless network for multimedia communications. IEEE Transactions on Consumer Electronics 51(2), 809–814 (2005)CrossRefGoogle Scholar
  6. 6.
    Elliott, E.O.: Estimates of Error Rates for Codes on Burst-Noise Channels. Bell System Technical Journal 42, 1977–1997 (1963)Google Scholar
  7. 7.
    Gilbert, E.N.: Capacity of a Burst-Noise Channel. Bell System Technical Journal 39, 1253–1266 (1960)MathSciNetGoogle Scholar
  8. 8.
    Goldsmith, A.: Wireless Communications. Cambridge University Press (2005)Google Scholar
  9. 9.
    Günes, M., Blywis, B., Juraschek, F.: Concept and Design of the Hybrid Distributed Embedded Systems Testbed. Technical Report TR-B-08-10, Freie Universität Berlin (2008), ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-10.pdf
  10. 10.
    Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G.P.: Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics 7(4), 529–539 (2011)CrossRefGoogle Scholar
  11. 11.
    Hartwell, J.A., Fapojuwo, A.O.: Modeling and characterization of frame loss process in IEEE 802.11 wireless local area networks. In: Vehicular Technology Conference, vol. 6, pp. 4481–4485. IEEE Computer Society (2004)Google Scholar
  12. 12.
    Haßlinger, G., Hohlfeld, O.: The Gilbert-Elliott Model for Packet Loss in Real Time Services on the Internet. In: 14th GI/ITG Conference on Measurement, Modeling, and Evaluation of Computer and Communication Systems (MMB), pp. 269–286. VDE Verlag (2008)Google Scholar
  13. 13.
    Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    IEEE. IEEE 802.11g-2003: Further Higher Data Rate Extension in the 2.4 GHz Band. Institute of Electrical and Electronics Engineers, Inc. (2003)Google Scholar
  15. 15.
    IEEE. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2007 revision). Institute of Electrical and Electronics Engineers, Inc. (2007)Google Scholar
  16. 16.
    Khalili, R., Salamatian, K.: A new analytic approach to evaluation of packet error rate in wireless networks. In: Proceedings of the 3rd Annual Communication Networks and Services Research Conference, CNSR 2005, pp. 333–338. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Konrad, A., Zhao, B.Y., Joseph, A.D., Ludwig, R.: A Markov-based channel model algorithm for wireless networks. Wireless Networks 9(3), 189–199 (2003)CrossRefGoogle Scholar
  18. 18.
    McDougall, J., Miller, S.: Sensitivity of Wireless Network Simulations to a Two-State Markov Model Channel Approximation. In: Global Telecommunications Conference. GLOBACOM 2003, vol. 2, pp. 697–701. IEEE Computer Society (2003)Google Scholar
  19. 19.
    Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Dover Publications Inc. (1981) (revised edition)Google Scholar
  20. 20.
    Reinecke, P., Krauß, T., Wolter, K.: Cluster-based fitting of phase-type distributions to empirical data. Computers & Mathematics with Applications (2012)Google Scholar
  21. 21.
    Reinecke, P., van Moorsel, A.P.A., Wolter, K.: The Fast and the Fair: A Fault-Injection-Driven Comparison of Restart Oracles for Reliable Web Services. In: Proc. 3rd International Conference on the Quantitative Evaluation of SysTems (QEST 2006), Riverside, CA, USA. IEEE (September 2006)Google Scholar
  22. 22.
    Reinecke, P., Wolter, K.: Phase-type approximations for message transmission times in web services reliable messaging. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119, pp. 191–207. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Reinecke, P., Wolter, K.: On Stochastic Fault-Injection for IP-Packet Loss Emulation. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 163–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems. A K Peters (1998)Google Scholar
  25. 25.
    Tcpdump/libpcap public repositoryGoogle Scholar
  26. 26.
    Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting with the EM Algorithm. IEEE Transactions on Dependable and Secure Computing 3, 245–258 (2006)CrossRefGoogle Scholar
  27. 27.
    Wolter, K., Reinecke, P., Krauss, T., Happ, D., Eitel, F.: PH-distributed Fault Models for mobile Communication. In: Proceedings of the 2012 Winter Simulation Conference, WSC, Berlin, Germany (2012)Google Scholar
  28. 28.
    Yajnik, M., Moon, S.B., Kurose, J.F., Towsley, D.F.: Measurement and Modeling of the Temporal Dependence in Packet Loss. In: Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. INFOCOM 1999, vol. 1, pp. 345–352. IEEE Computer Society (1999)Google Scholar
  29. 29.
    Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the constancy of internet path properties. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, IMW 2001, San Francisco, California, USA, pp. 197–211. ACM (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Happ
    • 1
  • Philipp Reinecke
    • 1
  • Katinka Wolter
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations