The Algebra of Gene Assembly in Ciliates

Chapter

Abstract

The formal theory of intramolecular gene assembly in ciliates is fitted into the well-established theories of Euler circuits in 4-regular graphs, principal pivot transformations, and delta-matroids.

References

  1. 1.
    M. Aigner, The Penrose polynomial of graphs and matroids, in Surveys in Combinatorics, vol 288, ed. by J.W.P. Hirschfeld. London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 2001), pp. 11–46. doi:10.1017/CBO9780511721328.004Google Scholar
  2. 2.
    M. Aigner, H. van der Holst, Interlace polynomials. Linear Algebra Appl. 377, 11–30 (2004). doi:10.1016/j.laa.2003.06.010CrossRefMATHGoogle Scholar
  3. 3.
    A. Angeleska, N. Jonoska, M. Saito, DNA recombination through assembly graphs. Discret. Appl. Math. 157(14), 3020–3037 (2009). doi:10.1016/j.dam.2009.06.011CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    R. Arratia, B. Bollobás, G. Sorkin, The interlace polynomial of a graph. J. Comb. Theory B 92(2), 199–233 (2004). doi:10.1016/j.jctb.2004.03.003CrossRefMATHGoogle Scholar
  5. 5.
    A. Bouchet, Isotropic systems. Eur. J. Comb. 8, 231–244 (1987). doi:10.1016/S0195-6698(87)80027-6CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    A. Bouchet, Representability of Δ-matroids, in Proceedings of the 6th Hungarian Colloquium of Combinatorics, Colloquia Mathematica Societatis János Bolyai, Eger, vol. 52 (North-Holland, 1987), pp. 167–182Google Scholar
  7. 7.
    A. Bouchet, Graphic presentations of isotropic systems. J. Comb. Theory B 45(1), 58–76 (1988). doi:10.1016/0095-8956(88)90055-XCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    A. Bouchet, Tutte-Martin polynomials and orienting vectors of isotropic systems. Graphs Comb. 7(3), 235–252 (1991). doi:10.1007/BF01787630CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. Bouchet, A. Duchamp, Representability of Δ-matroids over GF(2). Linear Algebra Appl. 146, 67–78 (1991). doi:10.1016/0024-3795(91)90020-WCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    R. Brijder, H. Hoogeboom, The fibers and range of reduction graphs in ciliates. Acta Inform. 45, 383–402 (2008). doi:10.1007/s00236-008-0074-3CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    R. Brijder, H. Hoogeboom, Interlace polynomials for delta-matroids (2010). [arXiv:1010.4678]Google Scholar
  12. 12.
    R. Brijder, H. Hoogeboom, The group structure of pivot and loop complementation on graphs and set systems. Eur. J. Comb. 32, 1353–1367 (2011). doi:10.1016/j.ejc.2011.03.002CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    R. Brijder, H. Hoogeboom, Nullity invariance for pivot and the interlace polynomial. Linear Algebra Appl. 435, 277–288 (2011). doi:10.1016/j.laa.2011.01.024CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    R. Brijder, H. Hoogeboom, Bicycle matroids and the Penrose polynomial for delta-matroids (2012). [arXiv:1210.7718]Google Scholar
  15. 15.
    R. Brijder, H. Hoogeboom, Binary symmetric matrix inversion through local complementation. Fundam. Inform. 116(1–4), 15–23 (2012). doi:10.3233/FI-2012-664MATHMathSciNetGoogle Scholar
  16. 16.
    R. Brijder, M. Daley, T. Harju, N. Jonoska, I. Petre, G. Rozenberg, Computational nature of gene assembly in ciliates, in Handbook of Natural Computing, ed. by G. Rozenberg, T. Bäck, J. Kok, vol. 3 (Springer, Berlin/London, 2012), pp. 1233–1280. doi:10.1007/978-3-540- 92910-9_37Google Scholar
  17. 17.
    R. Brijder, T. Harju, H. Hoogeboom, Pivots, determinants, and perfect matchings of graphs. Theor. Comput. Sci. 454, 64–71 (2012). doi:10.1016/j.tcs.2012.02.031CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    R. Cottle, J.S. Pang, R. Stone, The Linear Complementarity Problem (Academic, San Diego, 1992)MATHGoogle Scholar
  19. 19.
    A. Ehrenfeucht, I. Petre, D. Prescott, G. Rozenberg, Circularity and other invariants of gene assembly in ciliates, in Words, Semigroups, and Transductions, ed. by M. Ito et al. (World Scientific, Singapore, 2001), pp. 81–97. doi:10.1142/9789812810908_0007Google Scholar
  20. 20.
    A. Ehrenfeucht, T. Harju, I. Petre, G. Rozenberg, Characterizing the micronuclear gene patterns in ciliates. Theory Comput. Syst. 35, 501–519 (2002). doi:10.1007/s00224-002-1043-9CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    A. Ehrenfeucht, I. Petre, D. Prescott, G. Rozenberg, String and graph reduction systems for gene assembly in ciliates. Math. Struct. Comput. Sci. 12, 113–134 (2002). doi:10.1017/ S0960129501003516CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    A. Ehrenfeucht, T. Harju, I. Petre, D. Prescott, G. Rozenberg, Formal systems for gene assembly in ciliates. Theor. Comput. Sci. 292, 199–219 (2003). doi:10.1016/S0304-3975(01)00223-7CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    A. Ehrenfeucht, T. Harju, I. Petre, D. Prescott, G. Rozenberg, Computation in Living Cells – Gene Assembly in Ciliates (Springer, Berlin/New York, 2004)CrossRefMATHGoogle Scholar
  24. 24.
    J. Ellis-Monaghan, C. Merino, Graph polynomials and their applications I: the Tutte polynomial, in Structural Analysis of Complex Networks, ed. by M. Dehmer (Birkhäuser, Boston, 2011), pp. 219–255. doi:10.1007/978-0-8176-4789-6_9CrossRefGoogle Scholar
  25. 25.
    J. Ellis-Monaghan, C. Merino, Graph polynomials and their applications II: Interrelations and interpretations, in Structural Analysis of Complex Networks, ed. by M. Dehmer (Birkhäuser, Boston, 2011), pp. 257–292. doi:10.1007/978-0-8176-4789-6_10CrossRefGoogle Scholar
  26. 26.
    J. Geelen, A generalization of Tutte’s characterization of totally unimodular matrices. J. Comb. Theory B 70, 101–117 (1997). doi:10.1006/jctb.1997.1751CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    F. Genest, Graphes eulériens et complémentarité locale. Ph.D. thesis, Université de Montréal, 2002. Available online: arXiv:math/0701421v1 Google Scholar
  28. 28.
    R. Glantz, M. Pelillo, Graph polynomials from principal pivoting. Discret. Math. 306(24), 3253–3266 (2006). doi:10.1016/j.disc.2006.06.003CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    T. Harju, C. Li, I. Petre, G. Rozenberg, Parallelism in gene assembly. Nat. Comput. 5(2), 203–223 (2006). doi:10.1007/s11047-005-4462-0CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    F. Jaeger, On transition polynomials of 4-regular graphs, in Cycles and Rays, ed. by G. Hahn, G. Sabidussi, R. Woodrow. NATO ASI Series, vol. 301 (Kluwer, Dordrecht, 1990), pp. 123–150. doi:10.1007/978-94-009-0517-7_12Google Scholar
  31. 31.
    A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations, in Theory of Graphs, Proceedings of the Colloquium, Tihany, 1966 (Academic, New York, 1968), pp. 219–230Google Scholar
  32. 32.
    P. Martin, Enumérations eulériennes dans les multigraphes et invariants de Tutte-Grothendieck. Ph.D. thesis, Institut d’Informatique et de Mathématiques Appliquées de Grenoble (IMAG), 1977. Available online: http://tel.archives-ouvertes.fr/tel-00287330_v1/
  33. 33.
    S. Oum, Rank-width and vertex-minors. J. Comb. Theory B 95(1), 79–100 (2005). doi:10.1016/ j.jctb.2005.03.003CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    T. Parsons, Applications of principal pivoting, in Proceedings of the Princeton Symposium on Mathematical Programming, ed. by H. Kuhn (Princeton University Press, Princeton, 1970), pp. 567–581Google Scholar
  35. 35.
    R. Penrose, Applications of negative dimensional tensors, in Combinatorial Mathematics and Its Applications, Oxford, ed. by D. Welsh (Academic, 1971), pp. 211–244Google Scholar
  36. 36.
    P. Pevzner, Computational Molecular Biology: An Algorithmic Approach (The MIT Press, Cambridge, MA/ London, 2000)Google Scholar
  37. 37.
    D. Prescott, Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat. Rev. 1, 191–199 (2000). doi:10.1038/35042057CrossRefGoogle Scholar
  38. 38.
    D. Prescott, A. Greslin, Scrambled Actin I gene in the micronucleus of Oxytricha nova. Dev. Genet. 13, 66–74 (1992). doi:10.1002/dvg.1020130111CrossRefGoogle Scholar
  39. 39.
    D. Prescott, A. Ehrenfeucht, G. Rozenberg, Molecular operations for DNA processing in hypotrichous ciliates. Eur. J. Protistol. 37, 241–260 (2001). doi:10.1078/0932-4739-00807CrossRefGoogle Scholar
  40. 40.
    J. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Journal für die reine und angewandte Mathematik 147, 205–232 (1917). http://resolver.sub.uni-goettingen.de/purl?PPN243919689_0147 Google Scholar
  41. 41.
    L. Traldi, L. Zulli, A bracket polynomial for graphs, I. J. Knot Theory Ramif. 18(12), 1681–1709 (2009). doi:10.1142/S021821650900766XCrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    M. Tsatsomeros, Principal pivot transforms: properties and applications. Linear Algebra Appl. 307(1–3), 151–165 (2000). doi:10.1016/S0024-3795(99)00281-5CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    A. Tucker, A combinatorial equivalence of matrices, in Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics, vol. X, Columbia University, 24–26 April 1958 (American Mathematical Society, 1960), pp. 129–140. doi:10.1090/psapm/010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Hasselt UniversityDiepenbeekBelgium
  2. 2.Transnational University of LimburgDiepenbeekBelgium
  3. 3.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations