UV Photophysics of DNA and RNA Nucleotides In Vacuo: Dissociation Channels, Time Scales, and Electronic Spectra

  • J. Mathias Weber
  • Jesse Marcum
  • Steen Brøndsted Nielsen
Part of the Physical Chemistry in Action book series (PCIA)


This chapter deals with the UV-induced fragmentation of mononucleotide and oligonucleotide ions isolated in vacuo. We review gas-phase photodissociation spectra of mononucleotides, single strands, double strands and quadruplexes, and compare these with the corresponding spectra in solutions to consider solvatochromic shifts. The role of multiple bases is considered within the Frenkel exciton model that describes the electronic coupling between two or more bases, which is relevant to understand photoexcitation. We discuss relaxation of the excited states and the time scales for nucleotide dissociation when there is no solvent quenching of the excess energy. Finally, the photophysical behaviour of DNA with respect to electron ejection will be discussed with an emphasis on the functional groups involved in electron loss.


High Occupied Molecular Orbital Electron Detachment Frenkel Exciton Neutral Base Glycosidic Bond Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Crespo-Hernandez, C.E., Cohen, B., Hare, P.M., Kohler, B.: Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104, 1977–2019 (2004)CrossRefGoogle Scholar
  2. 2.
    Middleton, C.T., de La Harpe, K., Su, C., Law, Y.K., Crespo-Hernandez, C.E., Kohler, B.: DNA excited-state dynamics: from single bases to the double helix. Annu. Rev. Phys. Chem. 60, 217–239 (2009)CrossRefGoogle Scholar
  3. 3.
    Clark, L.B.: Transition moments of 2′-deoxyadenosine. J. Phys. Chem. 99, 4466–4470 (1995)CrossRefGoogle Scholar
  4. 4.
    Matsuoka, Y., Nordén, B.: Linear dichroism studies of nucleic-acid bases in stretched polyvinyl-alcohol film - molecular-orientation and electronic-transition moment directions. J. Phys. Chem. 86, 1378–1386 (1982)CrossRefGoogle Scholar
  5. 5.
    Petke, J.D., Maggiora, G.M., Christoffersen, R.E.: Ab initio configuration-interaction and random phase approximation calculations of the excited singlet and triplet-states of adenine and guanine. J. Am. Chem. Soc. 112, 5452–5460 (1990)CrossRefGoogle Scholar
  6. 6.
    Domcke, W., Yarkony, D.R., Köppel, H.: Conical Intersections: Electronic Structure, Dynamics & Spectroscopy. In: Ng, C.-Y. (ed.) Advanced Series in Physical Chemistry, vol. 15. World Scientific, Singapore (2004)Google Scholar
  7. 7.
    Longworth, J.W., Rahn, R.O., Shulman, R.G.: Luminescence of pyrimidines purines nucleosides and nucleotides at 77 degrees K. Effect of ionization and tautomerization. J. Chem. Phys. 45, 2930–2939 (1966)CrossRefGoogle Scholar
  8. 8.
    Markovitsi, D., Gustavsson, T., Banyasz, A.: Absorption of UV radiation by DNA: spatial and temporal features. Mutat. Res. Rev. Mutat. 704, 21–28 (2010)CrossRefGoogle Scholar
  9. 9.
    Markovitsi, D., Gustavsson, T., Vaya, I.: Fluorescence of DNA duplexes: from model helices to natural DNA. J. Phys. Chem. Lett. 1, 3271–3276 (2010)CrossRefGoogle Scholar
  10. 10.
    Vaya, I., Gustavsson, T., Miannay, F.A., Douki, T., Markovitsi, D.: Fluorescence of natural DNA: from the femtosecond to the nanosecond time scales. J. Am. Chem. Soc. 132, 11834–11835 (2010)CrossRefGoogle Scholar
  11. 11.
    Nielsen, L.M., Hoffmann, S.V., Nielsen, S.B.: Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated. Photochem. Photobiol. Sci. 12, 1273–1285 (2013)CrossRefGoogle Scholar
  12. 12.
    Ghosh, D., Isayev, O., Slipchenko, L.V., Krylov, A.I.: Effect of solvation on the vertical ionization energy of thymine: from microhydration to bulk. J. Phys. Chem. A 115, 6028–6038 (2011)CrossRefGoogle Scholar
  13. 13.
    Ghosh, D., Kosenkov, D., Vanovschi, V., Williams, C.F., Herbert, J.M., Gordon, M.S., Schmidt, M.W., Slipchenko, L.V., Krylov, A.I.: Noncovalent interactions in extended systems described by the effective fragment potential method: theory and application to nucleobase oligomers. J. Phys. Chem. A 114, 12739–12754 (2010)CrossRefGoogle Scholar
  14. 14.
    Bravaya, K.B., Kostko, O., Ahmed, M., Krylov, A.I.: The effect of π-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers. Phys. Chem. Chem. Phys. 12, 2292–2307 (2010)CrossRefGoogle Scholar
  15. 15.
    Alexandrova, A.N., Tully, J.C., Granucci, G.: Photochemistry of DNA fragments via semiclassical nonadiabatic dynamics. J. Phys. Chem. B 114, 12116–12128 (2010)CrossRefGoogle Scholar
  16. 16.
    Lange, A.W., Herbert, J.M.: Both intra- and interstrand charge-transfer excited states in aqueous B-DNA are present at energies comparable to, or just above, the 1ππ* excitonic bright states. J. Am. Chem. Soc. 131, 3913–3922 (2009)CrossRefGoogle Scholar
  17. 17.
    Nielsen, S.B., Andersen, J.U., Forster, J.S., Hvelplund, P., Liu, B., Pedersen, U.V., Tomita, S.: Photodestruction of adenosine 5′-monophosphate (AMP) nucleotide ions in vacuo: statistical versus nonstatistical processes. Phys. Rev. Lett. 91, 048302 (2003)CrossRefGoogle Scholar
  18. 18.
    Nielsen, S.B., Sølling, T.I.: Are conical intersections responsible for the ultrafast processes of adenine, protonated adenine, and the corresponding nucleosides? ChemPhysChem 6, 1276–1281 (2005)CrossRefGoogle Scholar
  19. 19.
    Nielsen, L.M., Pedersen, S.O., Kirketerp, M.B.S., Nielsen, S.B.: Absorption by DNA single strands of adenine isolated in vacuo: the role of multiple chromophores. J. Chem. Phys. 136, 064302 (2012)CrossRefGoogle Scholar
  20. 20.
    Nielsen, J.B., Thogersen, J., Jensen, S.K., Nielsen, S.B., Keiding, S.R.: Vibrational dynamics of deoxyguanosine 5′-monophosphate following UV excitation. Phys. Chem. Chem. Phys. 13, 13821–13826 (2011)CrossRefGoogle Scholar
  21. 21.
    Worm, E.S., Andersen, I.H., Andersen, J.U., Holm, A.I.S., Hvelplund, P., Kadhane, U., Nielsen, S.B., Poully, J.C., Støchkel, K.: Photodissociation of dinucleotide ions in a storage ring. Phys. Rev. A 75, 042709 (2007)CrossRefGoogle Scholar
  22. 22.
    Gabelica, V., Tabarin, T., Antoine, R., Rosu, F., Compagnon, I., Broyer, M., De Pauw, E., Dugourd, P.: Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass spectrometer. Anal. Chem. 78, 6564–6572 (2006)CrossRefGoogle Scholar
  23. 23.
    Gabelica, V., Rosu, F., De Pauw, E., Antoine, R., Tabarin, T., Broyer, M., Dugourd, P.: Electron photodetachment dissociation of DNA anions with covalently or noncovalently bound chromophores. J. Am. Soc. Mass. Spectrom. 18, 1990–2000 (2007)CrossRefGoogle Scholar
  24. 24.
    Gabelica, V., Rosu, F., Tabarin, T., Kinet, C., Antoine, R., Broyer, M., De Pauw, E., Dugourd, P.: Base-dependent electron photodetachment from negatively charged DNA strands upon 260-nm laser irradiation. J. Am. Chem. Soc. 129, 4706–4713 (2007)CrossRefGoogle Scholar
  25. 25.
    Rosu, F., Gabelica, V., De Pauw, E., Antoine, R., Broyer, M., Dugourd, P.: UV spectroscopy of DNA duplex and quadruplex structures in the gas phase. J. Phys. Chem. A 116, 5383–5391 (2012)CrossRefGoogle Scholar
  26. 26.
    Marcum, J.C., Halevi, A., Weber, J.M.: Photodamage to isolated mononucleotides-photodissociation spectra and fragment channels. Phys. Chem. Chem. Phys 11, 1740–1751 (2009)CrossRefGoogle Scholar
  27. 27.
    Marcum, J.C., Kaufman, S.H., Weber, J.M.: UV-photodissociation of non-cyclic and cyclic mononucleotides. Int. J. Mass Spectrom. 303, 129–136 (2011)CrossRefGoogle Scholar
  28. 28.
    Marcum, J.C.: Electronic photodissociation spectroscopy of electrosprayed anions. Doctoral Dissertation, Department of Chemistry and Biochemistry, University of Colorado, Boulder (2011)Google Scholar
  29. 29.
    Kumar, S.S., Perot-Taillandier, M., Lucas, B., Soorkia, S., Barat, M., Fayeton, J.A.: UV photodissociation dynamics of deprotonated 2′-deoxyadenosine 5′-monophosphate [5′-dAMP-H]-. J. Phys. Chem. A 115, 10383–10390 (2011)CrossRefGoogle Scholar
  30. 30.
    Smith, S.I., Brodbelt, J.S.: Hybrid activation methods for elucidating nucleic acid modifications. Anal. Chem. 83, 303–310 (2011)CrossRefGoogle Scholar
  31. 31.
    Aravind, G., Antoine, R., Klaerke, B., Lemoine, J., Racaud, A., Rahbek, D.B., Rajput, J., Dugourd, P., Andersen, L.H.: Sub-microsecond photodissociation pathways of gas phase adenosine 5′-monophosphate nucleotide ions. Phys. Chem. Chem. Phys 12, 3486–3490 (2010)CrossRefGoogle Scholar
  32. 32.
    Smith, S.I., Brodbelt, J.S.: Characterization of oligodeoxynucleotides and modifications by 193 nm photodissociation and electron photodetachment dissociation. Anal. Chem. 82, 7218–7226 (2010)CrossRefGoogle Scholar
  33. 33.
    Habibigoudarzi, S., McLuckey, S.A.: Ion-trap collisional activation of the deprotonated deoxymononucleoside and deoxydinucleoside monophosphates. J. Am. Soc. Mass Spectrom. 6, 102–113 (1995)CrossRefGoogle Scholar
  34. 34.
    Cerny, R.L., Gross, M.L., Grotjahn, L.: Fast-atom-bombardment combined with tandem mass-spectrometry for the study of dinucleotides. Anal. Biochem. 156, 424–435 (1986)CrossRefGoogle Scholar
  35. 35.
    Guan, Z.Q., Kelleher, N.L., Oconnor, P.B., Aaserud, D.J., Little, D.P., McLafferty, F.W.: 193 nm photodissociation of larger multiply-charged biomolecules. Int. J. Mass Spectrom. Ion Proc. 158, 357–364 (1996)CrossRefGoogle Scholar
  36. 36.
    Phillips, D.R., McCloskey, J.A.: A comprehensive study of the low-energy collision-induced dissociation of dinucleoside monophosphates. Int. J. Mass Spectrom. Ion Proc. 128, 61–82 (1993)CrossRefGoogle Scholar
  37. 37.
    McLuckey, S.A., Goeringer, D.E.: Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)CrossRefGoogle Scholar
  38. 38.
    Klassen, J.S., Schnier, P.D., Williams, E.R.: Blackbody infrared radiative dissociation of oligonucleotide anions. J. Am. Soc. Mass Spectrom. 9, 1117–1124 (1998)CrossRefGoogle Scholar
  39. 39.
    Wan, K.X., Gross, M.L.: Fragmentation mechanisms of oligodeoxynucleotides: effects of replacing phosphates with methylphosphonates and thymines with other bases in T-rich sequences. J. Am. Soc. Mass Spectrom. 12, 580–589 (2001)CrossRefGoogle Scholar
  40. 40.
    Yang, J., Hakansson, K.: Characterization of oligodeoxynucleotide fragmentation pathways in infrared multiphoton dissociation and electron detachment dissociation by Fourier transform ion cyclotron double resonance. Eur. J. Mass Spectrom. 15, 293–304 (2009)CrossRefGoogle Scholar
  41. 41.
    Marian, C.M.: A new pathway for the rapid decay of electronically excited adenine. J. Chem. Phys. 122, 104314 (2005)CrossRefGoogle Scholar
  42. 42.
    Ho, Y.H., Kebarle, P.: Studies of the dissociation mechanisms of deprotonated mononucleotides by energy resolved collision-induced dissociation. Int. J. Mass Spectrom. Ion Proc. 165, 433–455 (1997)CrossRefGoogle Scholar
  43. 43.
    Wu, J., McLuckey, S.A.: Gas-phase fragmentation of oligonucleotide ions. Int. J. Mass Spectrom. 237, 197–241 (2004)CrossRefGoogle Scholar
  44. 44.
    Rodgers, M.T., Campbell, S., Marzluff, E.M., Beauchamp, J.L.: Low-energy collision-induced dissociation of deprotonated dinucleotides - determination of the energetically favored dissociation pathways and the relative acidities of the nucleic-acid bases. Int. J. Mass Spectrom. Ion Proc. 137, 121–149 (1994)CrossRefGoogle Scholar
  45. 45.
    Huang, Y.Q., Kenttämaa, H.: Theoretical estimations of the 298 K gas-phase acidities of the pyrimidine-based nucleobases uracil, thymine, and cytosine. J. Phys. Chem. A 107, 4893–4897 (2003)CrossRefGoogle Scholar
  46. 46.
    Huang, Y.Q., Kenttämaa, H.: Theoretical estimations of the 298 K gas-phase acidities of the purine-based nucleobases adenine and guanine. J. Phys. Chem. A 108, 4485–4490 (2004)CrossRefGoogle Scholar
  47. 47.
    Lammich, L., Andersen, L.H., Aravind, G., Pedersen, H.B.: Experimental characterization of the metastable D2 - ion by photofragment imaging. Phys. Rev. A 80, 023413 (2009)CrossRefGoogle Scholar
  48. 48.
    Lepère, V., Lucas, B., Barat, M., Fayeton, J.A., Picard, V.J., Jouvet, C., Carcabal, P., Nielsen, I., Dedonder-Lardeux, C., Gregoire, G., Fujii, A.: Comprehensive characterization of the photodissociation pathways of protonated tryptophan. J. Chem. Phys. 127, 134313 (2007)CrossRefGoogle Scholar
  49. 49.
    Møller, S.P.: ELISA, an electrostatic storage ring for atomic physics. Nucl. Instrum. Methods 394, 281–286 (1997)CrossRefGoogle Scholar
  50. 50.
    Dahan, M., Fishman, R., Heber, O., Rappaport, M., Altstein, N., Zajfman, D., van der Zande, W.J.: New type of electrostatic ion trap for storage of fast ion beams. Rev. Sci. Instrum. 69, 76–83 (1998)CrossRefGoogle Scholar
  51. 51.
    Nolting, D., Weinkauf, R., Hertel, I.V., Schultz, T.: Excited-state relaxation of protonated adenine. ChemPhysChem 8, 751–755 (2007)CrossRefGoogle Scholar
  52. 52.
    Lührs, D.C., Viallon, J., Fischer, I.: Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Phys. Chem. Chem. Phys. 3, 1827–1831 (2001)CrossRefGoogle Scholar
  53. 53.
    Kang, H., Lee, K.T., Jung, B., Ko, Y.J., Kim, S.K.: Intrinsic lifetimes of the excited state of DNA and RNA bases. J. Am. Chem. Soc. 124, 12958–12959 (2002)CrossRefGoogle Scholar
  54. 54.
    DePuy, C.H., Bierbaum, V.M.: Gas-phase reactions of organic-anions as studied by the flowing afterglow technique. Acc. Chem. Res. 14, 146–153 (1981)CrossRefGoogle Scholar
  55. 55.
    Yang, X., Wang, X.B., Vorpagel, E.R., Wang, L.S.: Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. Proc. Natl. Acad. Sci. USA 101, 17588–17592 (2004)CrossRefGoogle Scholar
  56. 56.
    Nachtigallova, D., Hobza, P., Ritze, H.H.: Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Phys. Chem. Chem. Phys. 10, 5689–5697 (2008)CrossRefGoogle Scholar
  57. 57.
    Ritze, H.H., Hobza, P., Nachtigallova, D.: Electronic coupling in the excited electronic state of stacked DNA base homodimers. Phys. Chem. Chem. Phys. 9, 1672–1675 (2007)CrossRefGoogle Scholar
  58. 58.
    Bouvier, B., Dognon, J.P., Lavery, R., Markovitsi, D., Millié, P., Onidas, D., Zakrzewska, K.: Influence of conformational dynamics on the exciton states of DNA oligomers. J. Phys. Chem. B 107, 13512–13522 (2003)CrossRefGoogle Scholar
  59. 59.
    Tonzani, S., Schatz, G.C.: Electronic excitations and spectra in single-stranded DNA. J. Am. Chem. Soc. 130, 7607–7612 (2008)CrossRefGoogle Scholar
  60. 60.
    Improta, R., Santoro, F., Barone, V., Lami, A.: Vibronic model for the quantum dynamical study of the competition between bright and charge-transfer excited states in single-strand polynucleotides: the adenine dimer case. J. Phys. Chem. A 113, 15346–15354 (2009)CrossRefGoogle Scholar
  61. 61.
    Santoro, F., Barone, V., Improta, R.: Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proc. Natl. Acad. Sci. USA 104, 9931–9936 (2007)CrossRefGoogle Scholar
  62. 62.
    Banyasz, A., Gustavsson, T., Onidas, D., Changenet-Barret, P., Markovitsi, D., Improta, R.: Multi-pathway excited state relaxation of adenine oligomers in aqueous solution: a joint theoretical and experimental study. Chem. Eur. J. 19, 3762–3774 (2013)CrossRefGoogle Scholar
  63. 63.
    Boyarkin, O.V., Mercier, S.R., Kamariotis, A., Rizzo, T.R.: Electronic spectroscopy of cold, protonated tryptophan and tyrosine. J. Am. Chem. Soc. 128, 2816–2817 (2006)CrossRefGoogle Scholar
  64. 64.
    Gidden, J., Bowers, M.T.: Gas-phase conformational and energetic properties of deprotonated dinucleotides. Eur. Phys. J. D 20, 409–419 (2002)CrossRefGoogle Scholar
  65. 65.
    Li, L., Lubman, D.M.: Ultraviolet visible absorption-spectra of biological molecules in the gas-phase using pulsed laser-induced volatilization enhancement in a diode-array spectrophotometer. Anal. Chem. 59, 2538–2541 (1987)CrossRefGoogle Scholar
  66. 66.
    Zakjevskii, V.V., King, S.J., Dolgounitcheva, O., Zakrzewski, V.G., Ortiz, J.V.: Base and phosphate electron detachment energies of deoxyribonucleotide anions. J. Am. Chem. Soc. 128, 13350–13351 (2006)CrossRefGoogle Scholar
  67. 67.
    Weber, J.M., Ioffe, I.N., Berndt, K.M., Löffler, D., Friedrich, J., Ehrler, O.T., Danell, A.S., Parks, J.H., Kappes, M.M.: Photoelectron spectroscopy of isolated multiply negatively charged oligonucleotides. J. Am. Chem. Soc. 126, 8585–8589 (2004)CrossRefGoogle Scholar
  68. 68.
    Marian, C., Nolting, D., Weinkauf, R.: The electronic spectrum of protonated adenine: theory and experiment. Phys. Chem. Chem. Phys. 7, 3306–3316 (2005)CrossRefGoogle Scholar
  69. 69.
    Cheong, N.R., Nam, S.H., Park, H.S., Ryu, S., Song, J.K., Park, S.M., Perot, M., Lucas, B., Barat, M., Fayeton, J.A., Jouvet, C.: Photofragmentation in selected tautomers of protonated adenine. Phys. Chem. Chem. Phys. 13, 291–295 (2011)CrossRefGoogle Scholar
  70. 70.
    Zhu, Q.Q., LeBreton, P.R.: DNA photoionization and alkylation patterns in the interior of guanine runs. J. Am. Chem. Soc. 122, 12824–12834 (2000)CrossRefGoogle Scholar
  71. 71.
    Giese, B.: Electron transfer in DNA. Curr. Opin. Chem. Biol. 6, 612–618 (2002)CrossRefGoogle Scholar
  72. 72.
    Wang, L.S., Ding, C.F., Wang, X.B., Nicholas, J.B., Nicholas, B.: Probing the potential barriers and intramolecular electrostatic interactions in free doubly charged anions. Phys. Rev. Lett. 81, 2667–2670 (1998)CrossRefGoogle Scholar
  73. 73.
    Wang, X.B., Ding, C.F., Wang, L.S.: Photodetachment spectroscopy of a doubly charged anion: direct observation of the repulsive Coulomb barrier. Phys. Rev. Lett. 81, 3351–3354 (1998)CrossRefGoogle Scholar
  74. 74.
    Wang, X.B., Nicholas, J.B., Wang, L.S.: Intramolecular Coulomb repulsion and anisotropies of the repulsive Coulomb barrier in multiply charged anions. J. Chem. Phys. 113, 653–661 (2000)CrossRefGoogle Scholar
  75. 75.
    Wang, X.B., Wang, L.S.: Observation of negative electron-binding energy in a molecule. Nature 400, 245–248 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Mathias Weber
    • 1
  • Jesse Marcum
    • 2
  • Steen Brøndsted Nielsen
    • 3
  1. 1.JILA and Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA
  2. 2.Department of Chemistry and Food ScienceFramingham State UniversityFraminghamUSA
  3. 3.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations