Advertisement

Borel Determinacy of Concurrent Games

  • Julian Gutierrez
  • Glynn Winskel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8052)

Abstract

Just as traditional games can be represented by trees, so concurrent games can be represented by event structures. We show the determinacy of such concurrent games with Borel sets of configurations as winning conditions, provided they are race-free and bounded-concurrent. Both properties are shown necessary. The determinacy proof proceeds via a reduction to the determinacy of tree games, and the determinacy of these in turn reduces to the determinacy of Gale-Stewart games.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. Journal of Computer and System Sciences 78(2), 394–413 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Clairambault, P., Gutierrez, J., Winskel, G.: The winning ways of concurrent games. In: LICS, pp. 235–244. IEEE Computer Society (2012)Google Scholar
  4. 4.
    Clairambault, P., Gutierrez, J., Winskel, G.: Imperfect information in logic and concurrent games. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Abramsky Festschrift. LNCS, vol. 7860, pp. 7–20. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Gale, D., Stewart, F.: Infinite games with perfect information. Annals of Mathematical Studies 28, 245–266 (1953)MathSciNetGoogle Scholar
  6. 6.
    Martin, D.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Martin, D.: The determinacy of Blackwell games. Journal of Symbolic Logic 63(4), 1565–1581 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theoretical Computer Science 13, 85–108 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Nielsen, M., Winskel, G.: Models for concurrency. In: Handbook of Logic in Computer Science, pp. 1–148. Oxford University Press (1995)Google Scholar
  10. 10.
    Rideau, S., Winskel, G.: Concurrent strategies. In: LICS, pp. 409–418 (2011)Google Scholar
  11. 11.
    Winskel, G.: Prime algebraicity. Theoretical Computer Science 410(41), 4160–4168 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Zermelo, E.: On an application of set theory to the theory of the game of chess. In: Congress of Mathematicians, pp. 501–504. Cambridge University Press (1913)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julian Gutierrez
    • 1
  • Glynn Winskel
    • 2
  1. 1.Computer Science DepartmentUniversity of OxfordOxfordUK
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations