Satisfiability of CTL* with Constraints

  • Claudia Carapelle
  • Alexander Kartzow
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8052)


We show that satisfiability for CTL* with equality-, order-, and modulo-constraints over ℤ is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.


Description Logic Atomic Formula Atomic Proposition Relation Symbol Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: Proc. STACS 2012. LIPIcs, vol. 14, pp. 648–660. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  2. 2.
    Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees (long version),
  3. 3.
    Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative Presburger constraints. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL* with constraints Technical report, (2013),
  5. 5.
    Čerāns, K.: Deciding properties of integral relational automata. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: Proc. LICS 2010, pp. 70–79. IEEE Computer Society (2010)Google Scholar
  7. 7.
    Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap between definability and recognizability. Theor. Comput. Sci. 80(2), 153–202 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf. Comput. 205(3), 380–415 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Demri, S., Gascon, R.: Verification of qualitative ℤ constraints. Theor. Comput. Sci. 409(1), 24–40 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gascon, R.: An automata-based approach for CTL* with constraints. Electr. Notes Theor. Comput. Sci. 239, 193–211 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lutz, C.: Description logics with concrete domains-a survey. In: Advances in Modal Logic 4, pp. 265–296. King’s College Publications (2003)Google Scholar
  12. 12.
    Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artificial Intelligence 152(2), 235–274 (2004)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM Trans. Comput. Log. 5(4), 669–705 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general TBoxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudia Carapelle
    • 1
  • Alexander Kartzow
    • 1
  • Markus Lohrey
    • 1
  1. 1.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations