Satisfiability of CTL* with Constraints

  • Claudia Carapelle
  • Alexander Kartzow
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8052)

Abstract

We show that satisfiability for CTL* with equality-, order-, and modulo-constraints over ℤ is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: Proc. STACS 2012. LIPIcs, vol. 14, pp. 648–660. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  2. 2.
    Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees (long version), http://www.mimuw.edu.pl/~bojan/papers/wmsou-trees.pdf
  3. 3.
    Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative Presburger constraints. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL* with constraints Technical report, arXiv.org (2013), http://arxiv.org/abs/1306.0814
  5. 5.
    Čerāns, K.: Deciding properties of integral relational automata. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: Proc. LICS 2010, pp. 70–79. IEEE Computer Society (2010)Google Scholar
  7. 7.
    Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap between definability and recognizability. Theor. Comput. Sci. 80(2), 153–202 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf. Comput. 205(3), 380–415 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Demri, S., Gascon, R.: Verification of qualitative ℤ constraints. Theor. Comput. Sci. 409(1), 24–40 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gascon, R.: An automata-based approach for CTL* with constraints. Electr. Notes Theor. Comput. Sci. 239, 193–211 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lutz, C.: Description logics with concrete domains-a survey. In: Advances in Modal Logic 4, pp. 265–296. King’s College Publications (2003)Google Scholar
  12. 12.
    Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artificial Intelligence 152(2), 235–274 (2004)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM Trans. Comput. Log. 5(4), 669–705 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general TBoxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudia Carapelle
    • 1
  • Alexander Kartzow
    • 1
  • Markus Lohrey
    • 1
  1. 1.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations