A General Proof System for Modalities in Concurrent Constraint Programming

  • Vivek Nigam
  • Carlos Olarte
  • Elaine Pimentel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8052)

Abstract

The combination of timed, spatial, and epistemic information is often needed in the specification of modern concurrent systems. We propose the proof system SELL\(^\Cap\), which extends linear logic with subexponentials with quantifiers over subexponentials, therefore allowing for an arbitrary number of modalities. We then show how a proper structure of the subexponential signature in SELL\(^\Cap\) allows for the specification of concurrent systems with timed, spatial, and epistemic modalities. In the context of Concurrent Constraint Programming (CCP), a declarative model of concurrency, we illustrate how the view of subexponentials as specific modalities is general enough to modularly encode into SELL\(^\Cap\) variants of CCP with these three modalities, thus providing a proof-theoretic foundations for those calculi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and Computation 2(3), 297–347 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Danos, V., Joinet, J.-B., Schellinx, H.: The structure of exponentials: Uncovering the dynamics of linear logic proofs. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 159–171. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the complexity of bounded security protocols. JCS 12(2), 247–311 (2004)Google Scholar
  4. 4.
    Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: Operational and phase semantics. Information and Computation 165(1), 14–41 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)Google Scholar
  6. 6.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming: Denotation, logic and applications. Nordic Journal of Computing 9(1), 145–188 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Nigam, V.: On the complexity of linear authorization logics. In: LICS, pp. 511–520. IEEE (2012)Google Scholar
  10. 10.
    Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In: PPDP, pp. 129–140. ACM (2009)Google Scholar
  11. 11.
    Nigam, V., Miller, D.: A framework for proof systems. J. Autom. Reasoning 45(2), 157–188 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Nigam, V., Pimentel, E., Reis, G.: Specifying proof systems in linear logic with subexponentials. Electr. Notes Theor. Comput. Sci. 269, 109–123 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent constraint programming. Constraints (2013)Google Scholar
  14. 14.
    Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness of linearity vs persistence in the asychronous pi-calculus. In: LICS, pp. 59–68. IEEE Computer Society (2006)Google Scholar
  15. 15.
    Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: POPL, pp. 333–352. ACM (1991)Google Scholar
  16. 16.
    Saraswat, V.A.: Concurrent Constraint Programming. MIT Press (1993)Google Scholar
  17. 17.
    Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint programming. J. Symb. Comput. 22(5/6), 475–520 (1996)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework I: Judgments and properties. TR CMU-CS-02-101, CMU (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vivek Nigam
    • 1
  • Carlos Olarte
    • 2
  • Elaine Pimentel
    • 3
  1. 1.Universidade Federal da ParaíbaBrazil
  2. 2.Pontificia Universidad Javeriana-CaliColombia
  3. 3.Universidade Federal de Minas GeraisBrazil

Personalised recommendations