Advertisement

The Power of Priority Channel Systems

  • Christoph Haase
  • Sylvain Schmitz
  • Philippe Schnoebelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8052)

Abstract

We introduce Priority Channel Systems, a new natural class of channel systems where messages carry a numeric priority and where higher-priority messages can supersede lower-priority messages preceding them in the fifo communication buffers. The decidability of safety and inevitability properties is shown via the introduction of a priority embedding, a well-quasi-ordering that has not previously been used in well-structured systems. We then show how Priority Channel Systems can compute Fast-Growing functions and prove that the aforementioned verification problems are F ε0-complete.

Keywords

Channel System Full Version Canonical Factorization Hardy Function Ordinal Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. In: FST&TCS 2012. LIPIcs, vol. 18, pp. 374–386. Leibniz-Zentrum für Informatik (2012)Google Scholar
  2. 2.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inform. and Comput. 160(1-2), 109–127 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity results for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inform. and Comput. 127(2), 91–101 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 62–77. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite state spaces using QDDs. Form. Methods in Syst. Des. 14(3), 237–255 (1999)CrossRefGoogle Scholar
  7. 7.
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. Theor. Comput. Sci. 221(1-2), 211–250 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On termination and invariance for faulty channel machines. Form. Asp. Comput. 24(4-6), 595–607 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inform. and Comput. 202(2), 166–190 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Inform. and Comput. 124(1), 20–31 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In: LICS 2008, pp. 205–216. IEEE Press (2008)Google Scholar
  12. 12.
    Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Handbook of Proof Theory, ch. III, pp. 149–207. Elsevier (1998)Google Scholar
  14. 14.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Genest, B., Muscholl, A., Serre, O., Zeitoun, M.: Tree pattern rewriting systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 332–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gupta, A.: A constructive proof that trees are well-quasi-ordered under minors. In: Nerode, A., Taitslin, M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 174–185. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  17. 17.
    Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–364. IEEE Press (2012)Google Scholar
  18. 18.
    Kurucz, A.: Combining modal logics. In: Handbook of Modal Logics, ch. 15, pp. 869–926. Elsevier (2006)Google Scholar
  19. 19.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput. Logic 9(2) (2008)Google Scholar
  20. 20.
    Löb, M., Wainer, S.: Hierarchies of number theoretic functions. I. Arch. Math. Logic 13, 39–51 (1970)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ossona de Mendez, P., Nešetřil, J.: Sparsity, ch. 6. Bounded height trees and tree-depth, pp. 115–144. Springer (2012)Google Scholar
  22. 22.
    Meyer, R.: On boundedness in depth in the π-calculus. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer, Boston (2008)Google Scholar
  23. 23.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logic. Meth. Logic. Meth. in Comput. Sci. 3(1), 1–27 (2007)MathSciNetGoogle Scholar
  24. 24.
    Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Schmitz, S., Schnoebelen, P.: Algorithmic aspects of WQO theory. Lecture notes (2012), http://cel.archives-ouvertes.fr/cel-00727025
  26. 26.
    Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Schütte, K., Simpson, S.G.: Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Arch. Math. Logic 25(1), 75–89 (1985)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Haase
    • 1
  • Sylvain Schmitz
    • 1
  • Philippe Schnoebelen
    • 1
  1. 1.LSVENS Cachan & CNRSFrance

Personalised recommendations