From Model Checking to Model Measuring

  • Thomas A. Henzinger
  • Jan Otop
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8052)

Abstract

We define the model-measuring problem: given a model M and specification ϕ, what is the maximal distance ρ such that all models M′ within distance ρ from M satisfy (or violate) ϕ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification. We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved. We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reasoning 45(2), 91–129 (2010)MATHCrossRefGoogle Scholar
  2. 2.
    Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values. In: LICS, pp. 43–52. IEEE Computer Society (2011)Google Scholar
  3. 3.
    Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput. Sci. 413(1), 21–35 (2012)MATHCrossRefGoogle Scholar
  4. 4.
    Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. CoRR, abs/1006.1492 (2010)Google Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: CSL, pp. 385–400 (2008)Google Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 3–13. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: LICS, pp. 178–187. IEEE Computer Society (2005)Google Scholar
  10. 10.
    Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for temporal logic model checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 528–542. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Das, S., Banerjee, A., Basu, P., Dasgupta, P., Chakrabarti, P.P., Mohan, C.R., Fix, L.: Formal methods for analyzing the completeness of an assertion suite against a high-level fault model. In: VLSI Design, pp. 201–206. IEEE Computer Society (2005)Google Scholar
  12. 12.
    Dolev, D., Yao, A.C.: On the security of public key protocols. In: FOCS 1981, pp. 350–357. IEEE Computer Society, Washington, DC (1981)Google Scholar
  13. 13.
    Filar, J., Vrieze, K.: Competitive Markov decision processes. Springer-Verlag New York, Inc., New York (1996)CrossRefGoogle Scholar
  14. 14.
    Grumberg, O., Long, D.E.: Model checking and modular verification. In: Groote, J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 250–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A.: From boolean to quantitative notions of correctness. In: POPL 2010, pp. 157–158. ACM, New York (2010)Google Scholar
  16. 16.
    Hinrichsen, D., Son, N.K.: Stability radii of linear discrete-time systems and symplectic pencils. Int. J. of Robust and Nonlinear Control 1(2), 79–97 (1991)MATHCrossRefGoogle Scholar
  17. 17.
    Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to vacuity, coverage, and fault tolerance. In: FMCAD, pp. 1–9. IEEE (2008)Google Scholar
  18. 18.
    Kupferman, O., Vardi, M.Y.: Robust satisfaction. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 383–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. STTT 4(2), 224–233 (2003)CrossRefGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Leung, H.: Limitedness theorem on finite automata with distance functions: an algebraic proof. Theor. Comput. Sci. 81(1), 137–145 (1991)MATHCrossRefGoogle Scholar
  22. 22.
    Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics 7(3), 321–350 (2002)MathSciNetMATHGoogle Scholar
  23. 23.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas A. Henzinger
    • 1
  • Jan Otop
    • 1
  1. 1.ISTAustria

Personalised recommendations