Discovering Data-Aware Declarative Process Models from Event Logs

  • Fabrizio Maria Maggi
  • Marlon Dumas
  • Luciano García-Bañuelos
  • Marco Montali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8094)


A wealth of techniques are available to automatically discover business process models from event logs. However, the bulk of these techniques yield procedural process models that may be useful for detailed analysis, but do not necessarily provide a comprehensible picture of the process. Additionally, barring few exceptions, these techniques do not take into account data attributes associated to events in the log, which can otherwise provide valuable insights into the rules that govern the process. This paper contributes to filling these gaps by proposing a technique to automatically discover declarative process models that incorporate both control-flow dependencies and data conditions. The discovered models are conjunctions of first-order temporal logic expressions with an associated graphical representation (Declare notation). Importantly, the proposed technique discovers underspecified models capturing recurrent rules relating pairs of activities, as opposed to full specifications of process behavior – thus providing a summarized view of key rules governing the process. The proposed technique is validated on a real-life log of a cancer treatment process.


Automated Process Discovery Predicate Mining Linear Temporal Logic Declare 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    3TU Data Center. BPI Challenge, Event Log (2011), doi: 10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54Google Scholar
  2. 2.
    Bonaki, D., Odenbrett, M.R., Wijs, A., Ligtenberg, W.P.A., Hilbers, P.A.J.: Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors. BMC Bioinformatics 13, 281 (2012)CrossRefGoogle Scholar
  3. 3.
    Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)Google Scholar
  4. 4.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting Inductive Logic Programming Techniques for Declarative Process Mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    de Leoni, M., Dumas, M., García-Bañuelos, L.: Discovering Branching Conditions from Business Process Execution Logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Di Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE Trans. Software Eng. 27(2), 99–123 (2001)CrossRefGoogle Scholar
  8. 8.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. JMLR 10, 1305–1340 (2009)Google Scholar
  9. 9.
    IEEE Task Force on Process Mining. Process Mining Manifesto. In: Algebraic Semantics. LNBIP, vol. 99, pp. 169–194. Springer (2011)Google Scholar
  10. 10.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. Int. Journal on Software Tools for Technology Transfer, 224–233 (2003)Google Scholar
  12. 12.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying Inductive Logic Programming to Process Mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models. In: Proc. of ICSE, pp. 501–510. IEEE (2008)Google Scholar
  14. 14.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: Proc. of CIDM, pp. 192–199. IEEE (2011)Google Scholar
  17. 17.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for Loosely-Structured Processes. In: Proc. of EDOC, pp. 287–300. IEEE (2007)Google Scholar
  18. 18.
    Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to Users. PhD thesis, Beta Research School for Operations Management and Logistics, Eindhoven (2008)Google Scholar
  20. 20.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: An empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Rebuge, A., Ferreira, D.R.: Business process analysis in healthcare environments: A methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)CrossRefGoogle Scholar
  22. 22.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)Google Scholar
  24. 24.
    Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability of declarative process models. In: BMMDS/EMMSAD, pp. 163–177 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabrizio Maria Maggi
    • 1
  • Marlon Dumas
    • 1
  • Luciano García-Bañuelos
    • 1
  • Marco Montali
    • 2
  1. 1.University of TartuEstonia
  2. 2.KRDB Research CentreFree University of Bozen-BolzanoItaly

Personalised recommendations