Predicting the Quality of Process Model Matching

  • Matthias Weidlich
  • Tomer Sagi
  • Henrik Leopold
  • Avigdor Gal
  • Jan Mendling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8094)

Abstract

Process model matching refers to the task of creating correspondences among activities of different process models. This task is crucial whenever comparison and alignment of process models are called for. In recent years, there have been a few attempts to tackle process model matching. Yet, evaluating the obtained sets of correspondences reveals high variability in the results. Addressing this issue, we propose a method for predicting the quality of results derived by process model matchers. As such, prediction serves as a case-by-case decision making tool in estimating the amount of trust one should put into automatic matching. This paper proposes a model of prediction for process matching based on both process properties and preliminary match results.

Keywords

Extractor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castelo Branco, M., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching business process workflows across abstraction levels. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ekanayake, C.C., Dumas, M., García-Bañuelos, L., Rosa, M.L., ter Hofstede, A.H.M.: Approximate clone detection in repositories of business process models. [21], pp. 302–318Google Scholar
  3. 3.
    Dijkman, R.M., Dumas, M., García-Bañuelos, L., Käärik, R.: Aligning business process models. In: EDOC, pp. 45–53. IEEE Computer Society (2009)Google Scholar
  4. 4.
    Weidlich, M., Dijkman, R., Mendling, J.: The iCoP framework: Identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R.M., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. [21], pp. 319–334Google Scholar
  6. 6.
    Gal, A.: Uncertain Schema Matching. Morgan & Claypool Publishers (2011)Google Scholar
  7. 7.
    Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping. Springer (2011)Google Scholar
  8. 8.
    Sagi, T., Gal, A.: Schema matching prediction with applications to data source discovery and dynamic ensembling. Technical Report IE/IS-2013-02, Technion (March 2013), http://ie.technion.ac.il/tech_reports/1364134687_Prediction_v7.pdf
  9. 9.
    Miller, G.A.: WordNet: A lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  10. 10.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar
  11. 11.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009)CrossRefGoogle Scholar
  12. 12.
    Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of free-choice signal transition graphs. In: WODES, Edinburgh, Scotland, UK. IEE Society (1996)Google Scholar
  13. 13.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)MATHCrossRefGoogle Scholar
  14. 14.
    Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann (1998)Google Scholar
  15. 15.
    Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)Google Scholar
  16. 16.
    Wombacher, A., Li, C.: Alternative approaches for workflow similarity. In: IEEE SCC, pp. 337–345. IEEE Computer Society (2010)Google Scholar
  17. 17.
    Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 237–254. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – A proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  20. 20.
    Becker, M., Laue, R.: A comparative survey of business process similarity measures. Computers in Industry 63(2), 148–167 (2012)CrossRefGoogle Scholar
  21. 21.
    Barros, A., Gal, A., Kindler, E. (eds.): BPM 2012. LNCS, vol. 7481. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthias Weidlich
    • 1
  • Tomer Sagi
    • 1
  • Henrik Leopold
    • 2
  • Avigdor Gal
    • 1
  • Jan Mendling
    • 3
  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Wirtschaftsuniversität WienViennaAustria

Personalised recommendations