Conformance Checking in the Large: Partitioning and Topology

  • Jorge Munoz-Gama
  • Josep Carmona
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8094)


The torrents of event data generated by today’s systems are an important enabler for process mining. However, at the same time, the size and variability of the resulting event logs are challenging for today’s process mining techniques. This paper focuses on “conformance checking in the large” and presents a novel decomposition technique that partitions larger processes into sets of subprocesses that can be analyzed more easily. The resulting topological representation of the partitioning can be used to localize conformance problems. Moreover, we provide techniques to refine the decomposition such that similar process fragments are not considered twice during conformance analysis. All the techniques have been implemented in ProM, and experimental results are provided.


Process Mining Conformance Checking Process Diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    IEEE Task Force on Process Mining: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) Business Process Management Workshops. LNBIP, vol. 99, pp. 169–194. Springer (2012)Google Scholar
  3. 3.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical Conformance Checking of Process Models Based on Event Logs. In: Applications and Theory of Petri Nets (2013), TR:
  5. 5.
    Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model. ACM Transactions on Software Engineering and Methodology 8(2), 147–176 (1999)CrossRefGoogle Scholar
  6. 6.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Models for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery 2(2), 182–192 (2012)CrossRefGoogle Scholar
  9. 9.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: EDOC, pp. 55–64. IEEE Computer Society (2011)Google Scholar
  10. 10.
    Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Multi-Dimensional Quality Assessment of State-of-the-Art Process Discovery Algorithms Using Real-Life Event Logs. Information Systems 37(7), 654–676 (2012)CrossRefGoogle Scholar
  11. 11.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Alignment Based Precision Checking. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Stability, Confidence and Severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris, France, pp. 184–191. IEEE (April 2011)Google Scholar
  13. 13.
    van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic Approach. BPM-12-20 (accepted for Distributed and Parallel Databases) (2012)Google Scholar
  16. 16.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4) () 77(4), 541–580 (1989)CrossRefGoogle Scholar
  17. 17.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009)CrossRefGoogle Scholar
  18. 18.
    Burattin, A., Sperduti, A.: Plg: A framework for the generation of business process models and their execution logs. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 214–219. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge Munoz-Gama
    • 1
  • Josep Carmona
    • 1
  • Wil M. P. van der Aalst
    • 2
  1. 1.Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations