Processing k Nearest Neighbor Queries for Location-Dependent Data in MANETs

  • Yuka Komai
  • Yuya Sasaki
  • Takahiro Hara
  • Shojiro Nishio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)

Abstract

KNN queries, which retrieve the k nearest data items associated with a location (location-dependent data) from the location of the query issuer, are available for location-based services (LBSs) in mobile environments. Key challenges in designing system protocols for MANETs include low-overhead adaptability to network topology changes due to node mobility, and query processing that achieves high accuracy of the query result without a centralized server. In this paper, we propose the Filling Area (FA) method to process a kNN query in MANETs. To achieve a small search area, data items remain at nodes near the locations with which the items are associated, and nodes cache data items whose locations are near their own. When a node issues a query, neighboring nodes send back their copies, which will likely include the query result.

Keywords

MANET kNN query location-dependent data LBS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camp, T., Boleng, J., Davies, V.: A Survey of Mobility Models for Ad Hoc Networks Research. In: Wireless Communications and Mobile Computing (WCMC 2002), vol. 2(5), pp. 483–502 (2002)Google Scholar
  2. 2.
    Chatzimilioudis, G., Zeinalipour-Yazti, D., Lee, W.-C., Dikaiakos, M.D.: Continuous All k-Nearest Neighbor Querying in Smartphone Networks. In: Proc. of MDM 2012, pp. 79–88 (2012)Google Scholar
  3. 3.
    Hamida, E.B., Chelius, G.: A Line-Based Data Dissemination Protocol for Wireless Sensor Networks with Mobile Sink. In: Proc. of ICC 2008, pp. 2201–2205 (2008)Google Scholar
  4. 4.
    Heissenbüttel, M., Brtnoulli, T., Walchli, M.: BLR: Beacon-Less Routing Algorithm for Mobile Ad-Hoc Networks. Computer Communications 27(11), 1076–1086 (2004)CrossRefGoogle Scholar
  5. 5.
    Komai, Y., Sasaki, Y., Hara, T., Nishio, S.: A kNN Query Processing Method in Mobile Ad Hoc Networks. In: Proc. of MDM 2011, pp. 287–288 (2011)Google Scholar
  6. 6.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  7. 7.
    Nghiem, T.P., Waluyo, A.B., Taniar, D.: A Pure Peer-to-Peer Approach for kNN Query Processing in Mobile Ad Hoc Networks. In: Personal and Ubiquitous Computing (2012)Google Scholar
  8. 8.
    Padmanabhan, P., Gruenwald, L., Vallur, A., Atiquzzaman, M.: A Survery of Data Replication Techniques for Mobile Ad Hoc Network Databases. VLDB Journal 17(5), 1143–1164 (2008)CrossRefGoogle Scholar
  9. 9.
    Scalable Network Technologies: “Qualnet,” http://www.scalable-networks.com/
  10. 10.
    Song, Z., Roussopoulos, N.: K-Nearest Neighbor Search for Moving Query Point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Tsuchida, G., Ishihara, S.: Replica Arrangement for Location Dependent Data in Consideration of Network Partition in Ad Hoc Networks. International Journal of Communication Networks and Distributed Systems 2(4), 401–423 (2009)CrossRefGoogle Scholar
  12. 12.
    Yao, Y., Tang, X., Lim, E.-P.: Continuous monitoring of kNN queries in wireless sensor networks. In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325, pp. 662–673. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Yashiro, T., Porta, T.F.L.: Nomadic Agent System: Infrastructureless location based service system. IPSJ Journal 46(12), 2952–2962 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuka Komai
    • 1
  • Yuya Sasaki
    • 1
  • Takahiro Hara
    • 1
  • Shojiro Nishio
    • 1
  1. 1.Department of Multimedia Engineering Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan

Personalised recommendations