The Frequent Items Problem in Online Streaming under Various Performance Measures

  • Joan Boyar
  • Kim S. Larsen
  • Abyayananda Maiti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8070)


In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for online algorithms. It has long been known that competitive analysis suffers from drawbacks in certain situations, and many alternative measures have been proposed. However, more systematic comparative studies of performance measures have been initiated recently, and we continue this work, using competitive analysis, relative interval analysis, and relative worst order analysis on the Frequent Items Problem.


Input Sequence Competitive Ratio Online Algorithm Frequent Item Competitive Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies. In: Proceedings 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 229–237 (2007)Google Scholar
  2. 2.
    Becchetti, L., Koutsoupias, E.: Competitive analysis of aggregate max in windowed streaming. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 156–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Berinde, R., Cormode, G., Indyk, P., Strauss, M.J.: Space-optimal heavy hitters with strong error bounds. In: Proceedings 28th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pp. 157–166 (2009)Google Scholar
  4. 4.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for online algorithms. ACM Trans. Algorithms 3 (2007)Google Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to paging. J. Comput. System Sci. 73(5), 818–843 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms on access graphs. In: WADS 2013. LNCS (accepted for publication, 2013)Google Scholar
  8. 8.
    Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Boyar, J., Larsen, K.S., Maiti, A.: A comparison of performance measures via online search. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, pp. 303–314. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Boyar, J., Larsen, K.S., Maiti, A.: The frequent items problem in online streaming under various performance measures. arXiv:1306.0771 [cs.DS] (2013)Google Scholar
  11. 11.
    Cohen, E., Strauss, M.J.: Maintaining time-decaying stream aggregates. J. Algorithms 59(1), 19–36 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proceedings of the VLDB Endowment 1(2), 1530–1541 (2008)Google Scholar
  13. 13.
    Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT News 36(3), 67–81 (2005)CrossRefGoogle Scholar
  14. 14.
    Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging algorithms. Theoret. Comput. Sci. 410(38-40), 3694–3701 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Giannakopoulos, Y., Koutsoupias, E.: Competitive analysis of maintaining frequent items of a stream. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 340–351. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joan Boyar
    • 1
  • Kim S. Larsen
    • 1
  • Abyayananda Maiti
    • 1
  1. 1.University of Southern DenmarkOdenseDenmark

Personalised recommendations