The Lazy Bureaucrat Problem with Common Arrivals and Deadlines: Approximation and Mechanism Design

  • Laurent Gourvès
  • Jérôme Monnot
  • Aris T. Pagourtzis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8070)


We study the Lazy Bureaucrat scheduling problem (Arkin, Bender, Mitchell and Skiena [1]) in the case of common arrivals and deadlines. In this case the goal is to select a subset of given jobs in such a way that the total processing time is minimized and no other job can fit into the schedule. Our contribution comprises a linear time 4/3-approximation algorithm and an FPTAS, which respectively improve on a linear time 2-approximation algorithm and a PTAS given for the more general case of common deadlines [2,3]. We then consider a selfish perspective, in which jobs are submitted by players who may falsely report larger processing times, and show a tight upper bound of 2 on the approximation ratio of strategyproof mechanisms, even randomized ones. We conclude by introducing a maximization version of the problem and a dedicated greedy algorithm.


Feasible Solution Approximation Ratio Large Processing Time Good Approximation Ratio Polynomial Approximation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, E.M., Bender, M.A., Mitchell, J.S.B., Skiena, S.: The lazy bureaucrat scheduling problem. Inf. Comput. 184, 129–146 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Esfahbod, B., Ghodsi, M., Sharifi, A.: Common-deadline lazy bureaucrat scheduling problems. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 59–66. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Gai, L., Zhang, G.: On lazy bureaucrat scheduling with common deadlines. J. Comb. Optim. 15, 191–199 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hepner, C., Stein, C.: Minimizing makespan for the lazy bureaucrat problem. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 40–50. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Lin, M., Yang, Y., Xu, J.: On lazy bin covering and packing problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 340–349. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Lin, M., Yang, Y., Xu, J.: Improved approximation algorithms for maximum resource bin packing and lazy bin covering problems. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 567–577. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Epstein, L., Levin, A.: Asymptotic fully polynomial approximation schemes for variants of open-end bin packing. Inf. Process. Lett. 109, 32–37 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gai, L., Zhang, G.: Hardness of lazy packing and covering. Oper. Res. Lett. 37, 89–92 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press (2009)Google Scholar
  10. 10.
    Christodoulou, G., Gourvès, L., Pascual, F.: Scheduling selfish tasks: About the performance of truthful algorithms. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 187–197. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laurent Gourvès
    • 1
    • 2
  • Jérôme Monnot
    • 1
    • 2
  • Aris T. Pagourtzis
    • 3
  1. 1.CNRS UMR 7243France
  2. 2.PSL Université Paris DauphineParis Cedex 16France
  3. 3.School of Electrical and Computer EngineeringNational Technical University of Athens (NTUA)ZographouGreece

Personalised recommendations