Cancellation-Free Circuits in Unbounded and Bounded Depth

  • Joan Boyar
  • Magnus Gausdal Find
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8070)


We study the notion of “cancellation-free” circuits. This is a restriction of linear Boolean circuits (XOR-circuits), but can be considered as being equivalent to previously studied models of computation. The notion was coined by Boyar and Peralta in a study of heuristics for a particular circuit minimization problem. They asked how large a gap there can be between the smallest cancellation-free circuit and the smallest linear circuit. We show that the difference can be a factor Ω(n/log2 n). This improves on a recent result by Sergeev and Gashkov who have studied a similar problem. Furthermore, our proof holds for circuits of constant depth. We also study the complexity of computing the Sierpinski matrix using cancellation-free circuits and give a tight Ω(nlogn) lower bound.


Boolean Function Constant Depth Hadamard Matrice Strong Separation Nonzero Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Boyar, J., Find, M.: Cancellation-free circuits in unbounded and bounded depth. arXiv preprint (1305.3041) (May 2013)Google Scholar
  3. 3.
    Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to cryptology. J. Cryptology 26(2), 280–312 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Find, M., Göös, M., Kaski, P., Korhonen, J.: Separating Or, Sum and XOR Circuits. arXiv preprint (1304.0513) (April 2013)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  8. 8.
    Gashkov, S., Sergeev, I.: On the complexity of linear Boolean operators with thin matrices. Journal of Applied and Industrial Mathematics 5(2), 202–211 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hirsch, E., Melanich, O.: Personal communication (2012)Google Scholar
  10. 10.
  11. 11.
    Jukna, S.: Extremal Combinatorics - With Applications in Computer Science. Texts in Theoretical Computer Science. Springer, Heidelberg (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Heidelberg (2012)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kennes, R.: Computational aspects of the mobius transformation of graphs. IEEE Transactions on Systems, Man, and Cybernetics 22(2), 201–223 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kovári, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloquium Math 3, 50–57 (1954)MathSciNetGoogle Scholar
  15. 15.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1997)Google Scholar
  16. 16.
    Lupanov, O.: On rectifier and switching-and-rectifier schemes. Dokl. Akad. 30 Nauk SSSR 111, 1171–1174 (1956)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mehlhorn, K.: Some remarks on Boolean sums. Acta Informatica 12, 371–375 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Morgenstern, J.: Note on a lower bound on the linear complexity of the fast Fourier transform. J. ACM 20(2), 305–306 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Nechiporuk, É.: Rectifier networks. Soviet Physics Doklady 8, 5 (1963)Google Scholar
  20. 20.
    Paar, C.: Some remarks on efficient inversion in finite fields. In: Whistler, B. (ed.) IEEE Internatiol Symposium on Information Theory. LNCS, vol. 5162, p. 58. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Pippenger, N.: On the evaluation of powers and related problems (preliminary version). In: FOCS, pp. 258–263. IEEE Computer Society (1976)Google Scholar
  22. 22.
    Pippenger, N.: On another boolean matrix. Theor. Comput. Sci. 11, 49–56 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. 9(2), 230–250 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Sergeev, I.: On additive complexity of a sequence of matrices. arXiv preprint (1209.1645) (September 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joan Boyar
    • 1
  • Magnus Gausdal Find
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkDenmark

Personalised recommendations