Beyond the Second Law pp 361-382 | Cite as
Maximum Entropy Production and Maximum Shannon Entropy as Germane Principles for the Evolution of Enzyme Kinetics
Chapter
First Online:
- 2 Citations
- 2.3k Downloads
Abstract
There have been many attempts to use optimization approaches to study the biological evolution of enzyme kinetics. Our basic assumption here is that the biological evolution of catalytic cycle fluxes between enzyme internal functional states is accompanied by increased entropy production of the fluxes and increased Shannon information entropy of the states. We use simplified models of enzyme catalytic cycles and bioenergetically important free-energy transduction cycles to examine the extent to which this assumption agrees with experimental data. We also discuss the relevance of Prigogine’s minimal entropy production theorem to biological evolution.
Keywords
Entropy Production Metabolic Flux Forward Rate Proton Motive Force Thermodynamic Force
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1967)Google Scholar
- 2.Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rev. 426, 1–45 (2006)MathSciNetGoogle Scholar
- 3.Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
- 4.Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)CrossRefzbMATHGoogle Scholar
- 5.Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, New York (1971)zbMATHGoogle Scholar
- 6.Voet, D., Voet, J.G.: Biochemistry, 3rd edn. Wiley, New York (2004)Google Scholar
- 7.Ross, J., Vlad, M.O.: Exact solutions for the entropy production rate of several irreversible processes. J. Phys. Chem. A 109, 10607–10612 (2005)CrossRefGoogle Scholar
- 8.Metzner, H.: Bioelectrochemistry of photosynthesis: a theoretical approach. Bioelectrochem. Bioenerg. 13, 183–190 (1984)CrossRefGoogle Scholar
- 9.Andriesse, C.D., Hollestelle, M.J.: Minimum entropy production in photosynthesis. Biophys. Chem. 90, 249–253 (2001)CrossRefGoogle Scholar
- 10.Andriesse, C.D.: On the relation between stellar mass and luminosity. Astrophys. J. 539, 364–365 (2000)CrossRefGoogle Scholar
- 11.Jennings, R.C., Engelmann, E., Garlaschi, F., Casazza, A.P., Zucchelli, G.: Photosynthesis and negative entropy production. Biochim. Biophys. Acta Bioenerg. 1709, 251–255 (2005)CrossRefGoogle Scholar
- 12.Lavergne, L.: Commentary on photosynthesis and negative entropy production by Jennings and coworkers. Biochim. Biophys. Acta 1757, 1453–1459 (2006)CrossRefGoogle Scholar
- 13.Knox, R.S., Parson, W.W.: Entropy production and the second law in photosynthesis. Biochim. Biophys. Acta 1767, 1189–1193 (2007)CrossRefGoogle Scholar
- 14.Heinrich, R., Schuster, S., Holzhütter, H.G.: Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21 (1991)CrossRefGoogle Scholar
- 15.Albery, W.J., Knowles, J.R.: Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976)CrossRefGoogle Scholar
- 16.Pettersson, G.: Effect of evolution on the kinetic properties of enzymes. Eur. J. Biochem. 184, 561–566 (1989)CrossRefGoogle Scholar
- 17.Christensen, H., Martin, M.T., Waley, G.: β-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem. J. 266, 853–861 (1990)Google Scholar
- 18.Pettersson, G.: Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 295–298 (1992)CrossRefGoogle Scholar
- 19.Suarez, R.K., Staples, J.F., Lighton, J.R.B., West, T.G.: Relationships between enzymatic flux capacities and metabolic flux rates in muscles: nonequilibrium reactions in muscle glycolysis. Proc. Natl. Acad. Sci. 94, 7065–7069 (1997)CrossRefGoogle Scholar
- 20.Taylor, C.R., Weibel, E.R.: Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44, 1–10 (1981)CrossRefGoogle Scholar
- 21.Diamond, J.M.: Evolution of biological safety factors: a cost/benefit analysis. In: Weibel, E.R., Taylor, C.R., Bolis, L.C. (eds.) Principles of Animal Design: The Optimization and Symmorphosis Debate, pp. 21–27. Cambridge University Press, Cambridge (1998)Google Scholar
- 22.Suarez, R.K., Darveau, C.A.: Multi-level regulation and metabolic scaling. J. Exp. Biol. 208, 1627–1634 (2005)CrossRefGoogle Scholar
- 23.Reaves, M.L., Rabinowitz, J.L.: Metabolomics in systems microbiology. Curr. Opin. Biotechnol. 22, 17–25 (2011)CrossRefGoogle Scholar
- 24.Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
- 25.Dewar, R.C., Maritan, A.: The theoretical basis of maximum entropy production. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the Second Law: Entropy Production and Non-Equilibrium Systems. Springer, Berlin (2013)Google Scholar
- 26.Dobovišek, A., Županović, P., Brumen, M., Bonačić-Lošić, Ž., Kuić, D., Juretić, D.: Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)CrossRefGoogle Scholar
- 27.Hill, T.L.: Free Energy Transduction in Biology. The Steady State Kinetic and Thermodynamic Formalism. Academic Press, New York (1977)Google Scholar
- 28.Meszena, G., Westerhoff, H.V.: Non-equilibrium thermodynamics of light absorption. J. Phys. A: Math. Gen. 32, 301–311 (1999)CrossRefzbMATHGoogle Scholar
- 29.Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefzbMATHGoogle Scholar
- 30.Lukács, A., Papp, E.: Bacteriorhodopsin photocycle kinetics analyzed by the maximum entropy method. J. Photochem. Photobiol., B 77, 1–16 (2004)Google Scholar
- 31.Kakareka, J.W., Smith, P.D., Pohida, T.J., Hendler, R.W.: Simultaneous measurements of fast optical and proton current kinetics in the bacteriorhodopsin photocycle using an enhanced spectrophotometer. J. Biochem. Biophys. Methods 70, 1116–1123 (2008)CrossRefGoogle Scholar
- 32.Juretić, D., Westerhoff, H.V.: Variation of efficiency with free-energy dissipation in models of biological energy transduction. Biophys. Chem. 28, 21–34 (1987)CrossRefGoogle Scholar
- 33.Michel, H., Oesterhelt, D.: Electrochemical proton gradient across the cell membrane of Halobacterium halobium: Effect of N, N’-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry 19, 4607–4619 (1980)CrossRefGoogle Scholar
- 34.Boylestad, R.: Introductory Circuit Analysis. Prentice-Hall, Upper Saddle River (1999)Google Scholar
- 35.Hendler, R.W., Shrager, R.I., Bose, S.: Theory and practice for finding a correct kinetic model for the bacteriorhodopsin photocycle. J. Phys. Chem. B 105, 3319–3328 (2001)CrossRefGoogle Scholar
- 36.Chizhov, I., Chernavskii, D.S., Engelhard, M., Mueller, K.H., Zubov, B.V., Hess, B.: Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 71, 2329–2345 (1996)CrossRefGoogle Scholar
- 37.Lanyi, J.K.: Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta 1757, 1012–1018 (2006)CrossRefGoogle Scholar
- 38.Juretić, D., Županović, P.: The free-energy transduction and entropy production in initial photosynthetic reactions. In: Kleidon, A., Lorenz, R.D. (eds.) Non-Equilibrium Thermodynamics and the Production of Entropy, pp. 161–171. Springer, Berlin (2005)CrossRefGoogle Scholar
- 39.Boyer, P.D.: The ATP synthase –a splendid molecular machine. Ann. Rev. Biochem. 66, 717–749 (1997)CrossRefGoogle Scholar
- 40.Pänke, O., Rumberg, B.: Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction. Biochim. Biophys. Acta 1412, 118–128 (1999)CrossRefGoogle Scholar
- 41.Pänke, O., Rumberg, B.: Kinetic modelling of the proton translocating CF0CF1-ATP synthase from spinach. FEBS Lett. 383, 196–200 (1996)CrossRefGoogle Scholar
- 42.Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)CrossRefGoogle Scholar
- 43.Turina, P., Samoray, D., Graeber, P.: H +/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. Eur. Mol. Biol. Org. J. 22, 418–426 (2003)Google Scholar
- 44.Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
- 45.Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108, 171–190 (1957)MathSciNetCrossRefGoogle Scholar
- 46.Prigogine, I., Wiame, J.M.: Biologie et thermodynamique des phénomènes irréversibles. Experientia 2, 451–453 (1946)CrossRefGoogle Scholar
- 47.Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, Chichester (1998)zbMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2014