Graded Modal Logic GS5 and Itemset Support Satisfiability

  • Yakoub Salhi
  • Saïd Jabbour
  • Lakhdar Sais
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 146)

Abstract

Graded modal logic GS5 is an extension of S5 by the modal connective \(\diamondsuit_\lambda\): the formula \(\diamondsuit_\lambda A\) means that there are at least λ worlds satisfying A. In this paper, we show how to reduce GS5 satisfiability to propositional satisfiability (SAT). Furthermore, we consider a satisfiability problem related to the frequent itemset mining problem: SUPPSATn (where n is a strictly positive integer). We show how SUPPSATn can be encoded in GS5 satisfiability and consequently in SAT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216. ACM Press (1993)Google Scholar
  2. 2.
    Areces, C., Hoffmann, G., Denis, A.: Modal logics with counting. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS, vol. 6188, pp. 98–109. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artificial Intelligence 88(1-2), 195–213 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)Google Scholar
  5. 5.
    Calders, T.: Axiomatization and Deduction Rules for the Frequency of Itemsets. PhD Thesis. Universiteit Antwerpen (2003)Google Scholar
  6. 6.
    Calders, T.: Itemset frequency satisfiability: Complexity and axiomatization. Theoretical Computer Science 394(1-2), 84–111 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fine, K.: Cut-free modal sequents for normal modal logics. Notre-Dame Journal of Formal Logic 13(4), 516–520 (1972)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fitting, M.: Proof methods for modal and intuitionistic logics. Synthese Library, vol. 169. Kluwer (1983)Google Scholar
  9. 9.
    Fitting, M.: A simple propositional S5 tableau system. the Annals of Pure and Applied Logic 96, 107–115 (1999)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Giunchiglia, E., Giunchiglia, F., Sebastiani, R., Tacchella, A.: Sat vs. Translation Based decision procedures for modal logics: a comparative evaluation. Journal of Applied Non-Classical Logics 10(2) (2000)Google Scholar
  11. 11.
    Giunchiglia, E., Tacchella, A., Giunchiglia, F.: Sat-based decision procedures for classical modal logics. J. Autom. Reasoning 28(2), 143–171 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Information Processing Letters (1996)Google Scholar
  13. 13.
    Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal Computation 6(3), 467–480 (1977)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mielikäinen, T.: On Inverse Frequent Set Mining. In: 2nd IEEE ICDM Workshop on Privacy Preserving Data Mining (PPDM), pp. 18–23. IEEE (2003)Google Scholar
  15. 15.
    Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34, 507–534 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ohlbach, H.J.: Semantics-based translation methods for modal logics. J. Log. Comput. 1(5), 691–746 (1991)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sebastiani, R., McAllester, D.: New upper bounds for satisfiability in modal logics – the case-study of modal K (1997)Google Scholar
  18. 18.
    Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In: Slesenko, H.A.O. (ed.) Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)Google Scholar
  21. 21.
    van der Hoek, W., de Rijke, M.: Counting Objects. Journal of Logic and Computation 5(3), 325–345 (1995)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Wansing, H.: Sequent systems for modal logics. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 61–145. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yakoub Salhi
    • 1
    • 2
  • Saïd Jabbour
    • 1
    • 2
  • Lakhdar Sais
    • 1
    • 2
  1. 1.Université Lille-Nord de FranceFrance
  2. 2.CNRS UMR 8188CRILLensFrance

Personalised recommendations