Advertisement

TIRE and SPR-Enhanced SE for Adsorption Processes

  • Hans ArwinEmail author
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)

Abstract

Ellipsometry configurations in internal reflection mode facilitate studies of adsorption processes without the light beam passing through the medium from which adsorption occurs. Monitoring of adsorption processes on surfaces in opaque media is thus possible. If the surface in addition has a thin semitransparent metal film in which surface plasmon polaritons can be excited, one can achieve very high sensitivity to small changes in surface mass density of an adsorbed biolayer. Thickness changes as small as one pm can be resolved. In this chapter the theory for Total Internal Reflection Ellipsometry (TIRE), also called surface plasmon resonance enhanced ellipsometry, will be described and instrumentation will be briefly discussed. TIRE applied in spectroscopic as well as in angle of incidence interrogation modes will be considered. Finally applications in the areas of bioadsorption processes, biosensing, gas adsorption and biolayer imaging will be reviewed.

Keywords

Surface Plasmon Resonance Human Serum Albumin Evanescent Field Copper Phthalocyanine Surface Plasmon Resonance Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Uwe Beck and Gang Jin are acknowledged for providing figures and unpublished material.

References

  1. 1.
    T. Basova, A. Tsargorodskaya, A. Nabok, A.K. Hassan, A.G. Gürek, G. Gümüs, V. Ahsen, Mater. Sci. Eng. C 29, 814 (2009) CrossRefGoogle Scholar
  2. 2.
    L. Liu, Y.-Y. Chen, Y.-H. Meng, S. Chen, G. Jin, Thin Solid Films 519, 2758 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    D.E. Aspnes, Thin Solid Films 455–456, 3 (2004) CrossRefGoogle Scholar
  4. 4.
    H. Arwin, Sens. Actuators A, Phys. 92, 43 (2001) CrossRefGoogle Scholar
  5. 5.
    H. Arwin, in Encyclopedia of Sensors, vol. 3, ed. by C.A. Grimes, E.C. Dickey, M.V. Pishko (Am. Sci. Press, Syracuse, 2006), p. 329 Google Scholar
  6. 6.
    M. Ostroff, D. Maul, G.R. Bogart, S. Yang, J. Christian, D. Hopkins, D. Clark, B. Trotter, G. Moddel, Clin. Chem. Lab. Med. 44, 2031 (1998) Google Scholar
  7. 7.
    G. Jin, P. Tengvall, I. Lundström, H. Arwin, Anal. Biochem. 232, 69 (1995) CrossRefGoogle Scholar
  8. 8.
    G. Wang, H. Arwin, R. Jansson, IEEE Sens. J. 3, 739 (2003) CrossRefGoogle Scholar
  9. 9.
    F. Abelès, Thin Solid Films 34, 291 (1976) ADSCrossRefGoogle Scholar
  10. 10.
    E. Bortchagovsky, I. Yurchenko, Z. Kazantseva, J. Humlicek, J. Hora, Thin Solid Films 313–314, 795 (1998) CrossRefGoogle Scholar
  11. 11.
    M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, in Total Internal Reflection Ellipsometry, Proceedings of Eurosensors XIV, Copenhagen, Denmark, ed. by R. de Reuss, S. Bouwstra (MIC—Mikroelektronik Centret, Kgs. Lyngby, 2000), pp. 239–242, ISBN: 87-89935-50-0. CD-ROM Google Scholar
  12. 12.
    P. Westphal, A. Bornmann, Sens. Actuators A, Phys. 84, 278 (2002) CrossRefGoogle Scholar
  13. 13.
    M. Poksinski, H. Arwin, Protein monolayers monitored by internal reflection ellipsometry. Thin Solid Films 455–456, 716 (2004) CrossRefGoogle Scholar
  14. 14.
    J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, J. Colloid Interface Sci. 174, 79 (1995) CrossRefGoogle Scholar
  15. 15.
    S. Otsuki, K. Tamada, S.-i. Wakida, Appl. Opt. 44, 1410 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Kabashin, V.E. Kochergin, P.I. Nikitin, Sens. Actuators 54, 51 (1999) CrossRefGoogle Scholar
  17. 17.
    S.G. Nelson, K.S. Johnston, S.S. Yee, Sens. Actuators A, Phys. 35–36, 187 (1996) CrossRefGoogle Scholar
  18. 18.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1986) Google Scholar
  19. 19.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007) Google Scholar
  20. 20.
    H. Raether, Surface Plasmons. Springer-Verlag Tracts in Modern Physics (Springer, New York, 1988) Google Scholar
  21. 21.
    W. Yuan, H.P. Ho, S.Y. Wu, Y.K. Suen, S.K. Kong, Sens. Actuators A, Phys. 151, 23 (2009) CrossRefGoogle Scholar
  22. 22.
    S.-H. Kim, W. Chegal, J. Doh, H.M. Cho, D.W. Moon, Biophys. J. 100, 1819 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    W.-L. Hsu, S.-S. Lee, C.K. Lee, J. Biomed. Opt. 14, 024036 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    L.S. Maksimenko, I.E. Matyash, I.A. Minailova, O.N. Mishchuk, S.P. Rudenko, B.K. Serdega, Opt. Spectrosc. 109, 808 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    M. Poksinski, H. Arwin, Total internal reflection ellipsometry: monitoring of proteins on thin metal films, in Proteins at Solid-Liquid Interfaces, ed. by P. Déjardin (Springer, Berlin, 2006) Google Scholar
  26. 26.
    H. Arwin, M. Poksinski, K. Johansen, Phys. Status Solidi A 205, 817 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Z. Balevicius, V. Vaicikauskas, G.-J. Babonas, Appl. Surf. Sci. 256, 640 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    Z. Balevicius, R. Drevinskas, M. Dapkus, G.J. Babonas, A. Ramanaviciene, A. Ramanavicius, Thin Solid Films 519, 2959 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    M. Poksinski, H. Dzuho, H. Arwin, J. Electrochem. Soc. 11, B536 (2003) CrossRefGoogle Scholar
  30. 30.
    H. Arwin, M. Poksinski, K. Johansen, Appl. Opt. 43, 3028 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    M. Poksinski, H. Arwin, Opt. Lett. 32, 1308 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    M.K. Mustafa, A. Nabok, D. Parkinson, I.E. Tothill, F. Salam, A. Tsargorodskaya, Biosens. Bioelectron. 26, 1332 (2010) CrossRefGoogle Scholar
  33. 33.
    V. Kriechbaumer, A. Tsargorodskaya, M.K. Mustafa, T. Vinogradova, J. Lacey, D.P. Smith, B.M. Abell, A. Nabok, Biophys. J. 101, 504 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    Z. Balevicius, A. Ramanaviciene, I. Baleviciute, A. Makaraviciute, L. Mikoliunaite, A. Ramanaviciusa, Sens. Actuators B, Chem. 160, 555 (2011) CrossRefGoogle Scholar
  35. 35.
    I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, A. Ramanavicius, Biosens. Bioelectron. 39, 170 (2013) CrossRefGoogle Scholar
  36. 36.
    R.S. Moirangthem, Y.-C. Chang, S.-H. Hsu, P.-K. Wei, Biosens. Bioelectron. 25, 2633 (2010) CrossRefGoogle Scholar
  37. 37.
    M. Poksinski, H. Arwin, Sens. Actuators A, Phys. 94, 247 (2003) CrossRefGoogle Scholar
  38. 38.
    A. Nabok, A. Tsargorodskaya, F. Davis, S.P.J. Higson, Biosens. Bioelectron. 23, 377 (2007) CrossRefGoogle Scholar
  39. 39.
    N.C.H. Le, V. Gubala, R.P. Gandhiraman, C. Coyle, S. Daniels, D.E. Williams, Anal. Bioanal. Chem. 398, 1927 (2010) CrossRefGoogle Scholar
  40. 40.
    M. Erber, J. Stadermann, K.-J. Eichhorn, Macromol. Symp. 305, 101 (2011) CrossRefGoogle Scholar
  41. 41.
    A.V. Nabok, A. Tsargorodskaya, A.K. Hassan, N.F. Starodub, Appl. Surf. Sci. 246, 381 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    A. Nabok, A. Tsargorodskaya, A. Holloway, N.F. Starodub, A. Demchenko, Langmuir 23, 8485 (2007) CrossRefGoogle Scholar
  43. 43.
    A. Nabok, A. Tsargorodskaya, M.K. Mustafa, A. Székács, I. Székács, N.F. Starodub, Proc. Chem. 1, 1491 (2009) CrossRefGoogle Scholar
  44. 44.
    A.V. Nabok, A. Tsargorodskaya, A. Holloway, N.F. Starodub, O. Gojster, Biosens. Bioelectron. 22, 885 (2007) CrossRefGoogle Scholar
  45. 45.
    A.V. Nabok, M.K. Mustafa, A. Tsargorodskaya, N.F. Starodub, BioNanoScience 1, 38 (2011) CrossRefGoogle Scholar
  46. 46.
    A. Hassan, T. Basova, F. Yuksel, G. Gümüs, A.G. Gürek, V. Ahsen, Sens. Actuators B, Chem. 175, 73 (2012) CrossRefGoogle Scholar
  47. 47.
    T. Basova, V. Plyashkevich, A. Hassan, A.G. Gürek, G. Gümüs, V. Ahsen, Sens. Actuators B, Chem. 139, 557 (2009) CrossRefGoogle Scholar
  48. 48.
    T. Basova, A. Hassan, F. Yuksel, A.G. Gürek, V. Ahsen, Sens. Actuators B, Chem. 150, 523 (2010) CrossRefGoogle Scholar
  49. 49.
    A. Hassan, T. Basova, S. Tuncel, F. Yuksel, A.G. Gürek, V. Ahsen, Proc. Eng. 25, 272 (2011) CrossRefGoogle Scholar
  50. 50.
    B. Celen, G. Demirel, E. Piskin, Nanotechnology 22, 165501 (2011) ADSCrossRefGoogle Scholar
  51. 51.
    G. Jin, Y.H. Meng, L. Liu, Y. Niu, S. Chen, Q. Cai, T.J. Jiang, Thin Solid Films 519, 2750 (2011) ADSCrossRefGoogle Scholar
  52. 52.
    H. Arwin, S. Welin-Klintström, R. Jansson, J. Colloid Interface Sci. 156, 377 (1993) CrossRefGoogle Scholar
  53. 53.
    G. Jin, Private communication. Also presented as “Protein microarray biosensor based on imaging ellipsometry and biomedical applications” in 7th Asian Congress for Microcirculation and the 6th Chinese National Congress for Microcirculation, Tai’an, China, Oct. 17–19, 2008 Google Scholar
  54. 54.
    Y. Zhang, Y. Chen, G. Jin, Sens. Actuators B, Chem. 159, 121 (2011) CrossRefGoogle Scholar
  55. 55.
    A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, J. Steinbach, Sens. Actuators B, Chem. 149, 194 (2010) CrossRefGoogle Scholar
  56. 56.
    J. Mårtensson, H. Arwin, I. Lundström, Sens. Actuators B, Chem. 1, 134 (1990) CrossRefGoogle Scholar
  57. 57.
    R.S. Moirangthem, Y.-C. Chang, P.-K. Wei, Biomed. Opt. Express 2, 2569 (2011) CrossRefGoogle Scholar
  58. 58.
    S. Patskovsky, A.V. Kabashin, M. Meunier, Opt. Mater. 27, 1093 (2005) ADSCrossRefGoogle Scholar
  59. 59.
    S. Patskovsky, A.V. Kabashin, M. Meunier, J.H.T. Luong, Appl. Opt. 34, 6905 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory of Applied Optics, Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations