Bounding the Running Time of Algorithms for Scheduling and Packing Problems

  • Klaus Jansen
  • Felix Land
  • Kati Land
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)


We investigate the implications of the exponential time hypothesis on algorithms for scheduling and packing problems. Our main focus is to show tight lower bounds on the running time of these algorithms. For exact algorithms we investigate the dependence of the running time on the number n of items (for packing) or jobs (for scheduling). We show that many of these problems, including SubsetSum, Knapsack, BinPacking, 〈P2 | | C max 〉, and 〈P2 | | ∑ w j C j 〉, have a lower bound of 2 o(n) × ∥ I ∥  O(1). We also develop an algorithmic framework that is able to solve a large number of scheduling and packing problems in time 2 O(n) × ∥ I ∥  O(1). Finally, we show that there is no PTAS for MultipleKnapsack and 2d-Knapsack with running time \(2^{o}({\frac{1}{\epsilon }}) \times \parallel I \parallel^{O(1)}\) and \(n^{o({\frac{1}{\epsilon }})} \times \parallel{I}\parallel^{O(1)}\).


scheduling packing exponential time hypothesis exact algorithms lower bounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achugbue, J.O., Chin, F.Y.: Scheduling the open shop to minimize mean flow time. SIAM Journal on Computing 11(4), 709–720 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems with cardinality constraints. European Journal of Operational Research 123(2), 333–345 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, J., et al.: On the computational hardness based on linear FPT-reductions. Journal of Combinatorial Optimization 11, 231–247 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Drozdowski, M.: On The Complexity of Multiprocessor Task Scheduling. Bulletin of the Polish Academy of Sciences. Technical Sciences 43(3), 381–392 (1995)zbMATHGoogle Scholar
  5. 5.
    Du, J., Leung, J.Y.-T.: Minimizing Mean Flow Time in Two-Machine Open Shops and Flow Shops. Journal of Algorithms 14(1), 24–44 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. In: Teng, S.-H. (ed.) Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 483–490. SIAM, Philadelphia (2008)Google Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  8. 8.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Mathematical Operations Research 1, 117–129 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)Google Scholar
  11. 11.
    Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: complexity and approximation. Operations Research 26(1), 36–52 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Held, M., Karp, R.: A Dynamic Programming Approach to Sequencing Problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. Journal on Computing 13(2), 157–168 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Horowitz, E., Sahni, S.: Computing Partitions with Applications to the Knapsack Problem. Journal of the ACM 21(2), 277–292 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Impagliazzo, R., Paturi, R.: On the Complexity of k-Sat. Journal of Computer and System Sciences 62(2), 367–375 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential Complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jansen, K.: A Fast Approximation Scheme for the Multiple Knapsack Problem. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 313–324. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Jansen, K., Land, K., Land, F.: Bounding the Running Time of Algorithms for Scheduling and Packing Problems. Technical Report 1302. Institute of Computer Science, University of Kiel, Germany (2013)Google Scholar
  19. 19.
    Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. Journal of Computer and System Sciences 79(1), 39–49 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kulik, A., Shachnai, H.: There is no EPTAS for two-dimensional knapsack. Information Processing Letters 110 16, 707–710 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of Scheduling under Precedence Constraints. Operations Research 26(1), 22–35 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of Machine Scheduling Problems. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Studies in Integer Programming. Annals of Discrete Mathematics, vol. 1, pp. 343–362. Elsevier (1977)Google Scholar
  23. 23.
    Lenté, C., Liedloff, M., Soukhal, A., T’kindt, V.: Exponential-time algorithms for scheduling problems. In: 10th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2011), Nymburk, Czech Republic (2011)Google Scholar
  24. 24.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential Time Hypothesis. Bulletin of the EATCS 105, 41–72 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51(1), 60–78 (2008)CrossRefGoogle Scholar
  26. 26.
    O’Neil, T.E.: Sub-Exponential Algorithms for 0/1-Knapsack and Bin Packing. In: Arabnia, H.R., Gravvanis, G.A., Solo, A.M.G. (eds.) Proceedings of the 2011 International Conference on Foundations of Computer Science, pp. 209–214. CSREA Press (2011)Google Scholar
  27. 27.
    O’Neil, T.E., Kerlin, S.: A simple 2\(^{O(\sqrt{x})}\)-algorithm for Partition and Subset Sum. In: Arabnia, H.R., Gravvanis, G.A., Solo, A.M.G. (eds.) Proceedings of the 2010 International Conference on Foundations of Computer Science, pp. 55–58. CSREA Press (2010)Google Scholar
  28. 28.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Pătraşcu, M., Williams, R.: On the possibility of faster Sat algorithms. In: Charikar, M. (ed.) Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1065–1075. SIAM, Philadelphia (2010)Google Scholar
  30. 30.
    Rinnooy Kan, A.H.G.: Machine scheduling problems: classification, complexity and computations. Stenfert Kroese (1976)Google Scholar
  31. 31.
    Wegener, I.: Complexity Theory: Exploring the Limits of Efficient Algorithms. Trans. from the German by R. J. Pruim. Springer (2003)Google Scholar
  32. 32.
    Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K., Sevast’janov, S.V., Shmoys, D.B.: Short shop schedules. Operations Research 45(2), 288–294 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Klaus Jansen
    • 1
  • Felix Land
    • 1
  • Kati Land
    • 1
  1. 1.Institute of Computer ScienceUniversity of KielKielGermany

Personalised recommendations