Universal Point Sets for Planar Three-Trees

  • Radoslav Fulek
  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)


For every n ∈ ℕ, we present a set S n of O(n 5/3) points in the plane such that every planar 3-tree with n vertices has a straight-line embedding in the plane in which the vertices are mapped to a subset of S n . This is the first subquadratic upper bound on the size of universal point sets for planar 3-trees, as well as for the class of 2-trees and serial parallel graphs.


planar 3-tree universal point set straight-line embedding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.: Small point sets for simply-nested planar graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discrete Computational Geometry 45, 141–160 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs, in. In: Proc. Symposuim on Computational Geometry, pp. 41–50. ACM Press (2011)Google Scholar
  4. 4.
    Bose, P.: On embedding an outer-planar graph in a point set. Computational Geometry: Theory and Applications 23(3), 303–312 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brandenburg, F.-J.: Drawing planar graphs on \(\frac{8}{9}n^2\) area. Electronic Notes in Discrete Mathematics 31, 37–40 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bukh, B., Matoušek, J., Nivasch, G.: Lower bounds for weak epsilon-nets and stair-convexity. Israel Journal of Mathematics 182, 199–228 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. Journal of Graph Algorithms and Applications 10(2), 353–363 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chrobak, M., Karloff, H.J.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20(4), 83–86 (1989)CrossRefGoogle Scholar
  9. 9.
    Chrobak, M., Payne, T.: A linear time algorithm for drawing a planar graph on a grid. Information Processing Letters 54, 241–246 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica 54(1), 25–53 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. In: Preparata, F. (ed.) Advances in Computing Research, vol. 2. JAI Press Inc., London (1984)Google Scholar
  13. 13.
    Dujmović, V., Evans, W., Lazard, S., Lenhart, W., Liotta, G., Rappaport, D., Wismath, S.: On point-sets that support planar graphs. Computational Geometry: Theory and Applications 46(1), 29–50 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Durocher, S., Mondal, D.: On the hardness of point-set embeddability. In: Rahman, M.S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Durocher, S., Mondal, D., Nishat, R.I., Rahman, M.S., Whitesides, S.: Embedding plane 3-trees in ℝ2 and ℝ3. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 39–51. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Everett, H., Lazard, S., Liotta, G., Wismath, S.: Universal sets of n points for one-bend drawings of planar graphs with n vertices. Discrete and Computational Geometry 43(2), 272–288 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fáry, I.: On straight lines representation of plane graphs. Acta Scientiarum Mathematicarum (Szeged) 11, 229–233 (1948)zbMATHGoogle Scholar
  18. 18.
    Hossain, M. I., Mondal, D., Rahman, M. S., Salma, S.A.: Universal line-sets for drawing planar 3-trees. In: Rahman, M.S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 136–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Frati, F.: Lower bounds on the area requirements of series-parallel graphs. Discrete Mathematics and Theoretical Computer Science 12(5), 139–174 (2010)MathSciNetGoogle Scholar
  20. 20.
    Frati, F., Patrignani, M.: A note on minimum-area straight-line drawings of planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 339–344. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Fulek, R., Tóth, C.D.: Universal point sets for planar three-tree,
  22. 22.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. American Mathematic Monthly 98, 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Information Processing Letters 92, 95–98 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Nishat, R., Mondal, D., Rahman, M.S.: Point-set embeddings of plane 3-trees. Computational Geometry: Theory and Applications 45(3), 88–98 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Schnyder, W.: Embedding planar graphs in the grid, in. In: Proc. 1st Symposium on Discrete Algorithms, pp. 138–147. ACM Press (1990)Google Scholar
  26. 26.
    Zhou, X., Hikino, T., Nishizeki, T.: Small grid drawings of planar graphs with balanced partition. Journal of Combinatorial Optimization 24(2), 99–115 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radoslav Fulek
    • 1
  • Csaba D. Tóth
    • 2
    • 3
  1. 1.Charles UniversityPragueCzech Republic
  2. 2.California State UniversityNorthridgeUSA
  3. 3.University of CalgaryCanada

Personalised recommendations