Approximation Algorithms for B1-EPG Graphs

  • Dror Epstein
  • Martin Charles Golumbic
  • Gila Morgenstern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)

Abstract

The edge intersection graphs of paths on a grid (or EPG graphs) are graphs whose vertices can be represented as simple paths on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. We consider the case of single-bend paths, namely, the class known as B1-EPG graphs. The motivation for studying these graphs comes from the context of circuit layout problems. It is known that recognizing B1-EPG graphs is NP-complete, nevertheless, optimization problems when given a set of paths in the grid are of considerable practical interest.

In this paper, we show that the coloring problem and the maximum independent set problem are both NP-complete for B1-EPG graphs, even when the EPG representation is given. We then provide efficient 4-approximation algorithms for both of these problems, assuming the EPG representation is given. We conclude by noting that the maximum clique problem can be optimally solved in polynomial time for B1-EPG graphs, even when the EPG representation is not given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asinowski, A., Ries, B.: Some properties of edge intersection graphs of single bend paths on a grid. Discrete Mathematics 312, 427–440 (2012)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Asinowski, A., Suk, A.: Edge intersection graphs of systems of grid paths with bounded number of bends. Discrete Applied Mathematics 157, 3174–3180 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Biedl, T., Stern, M.: On edge intersection graphs of k-bend paths in grids. Discrete Mathematics & Theoretical Computer Science (DMTCS) 12, 1–12 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Cameron, K., Chaplick, S., Hoang, C.T.: Recognizing Edge Intersection Graphs of \(\llcorner\)-Shaped Grid Paths. In: LAGOS 2013 (to appear, 2013)Google Scholar
  5. 5.
    Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection graphs of paths on a grid (submitted)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.: The complexity of coloring circular arcs and chords. SIAM. J. on Algebraic and Discrete Methods 1, 216–227 (1980)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980); Annals of Discrete Mathematics, 2nd edn., vol. 57. Elsevier, Amsterdam (2004)Google Scholar
  9. 9.
    Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend paths on a grid. Networks 54, 130–138 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45, 19–23 (1993)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Heldt, D., Knauer, K., Ueckerdt, T.: Edge-intersection graphs of grid paths: the bend-number, Arxiv preprint arXiv:1009.2861, arxiv.org (September 2010)Google Scholar
  12. 12.
    Heldt, D., Knauer, K., Ueckerdt, T.: On the bend-number of planar and outerplanar graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 458–469. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Kako, A., Ono, T., Hirata, T., Halldórsson, M.M.: Approximation algorithms for the weighted independent set problem in sparse graphs. Discrete Applied Mathematics 157, 617–626 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kratochvíl, J., Nešetřil, J.: Independent set and clique problems in intersection-defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae 31, 85–93 (1990)MathSciNetMATHGoogle Scholar
  15. 15.
    Spinrad, J.P., Sritharan, R.: Algorithms for weakly triangulated graphs. Discrete Appl. Math. 59, 181–191 (1995)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30, 135–140 (1981)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dror Epstein
    • 1
    • 2
  • Martin Charles Golumbic
    • 1
    • 2
  • Gila Morgenstern
    • 2
  1. 1.Department of Computer ScienceUniversity of HaifaIsrael
  2. 2.Caesarea Rothschild Institute (CRI)University of HaifaIsrael

Personalised recommendations