Treewidth and Pathwidth Parameterized by the Vertex Cover Number

  • Mathieu Chapelle
  • Mathieu Liedloff
  • Ioan Todinca
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)

Abstract

After the number of vertices, Vertex Cover Number is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex Cover Number. Here we consider the treewidth and pathwidth problems parameterized by k, the size of a minimum vertex cover of the input graph. We show that the pathwidth and treewidth can be computed in O*(3k) time. This complements recent polynomial kernel results for treewidth and pathwidth parameterized by the Vertex Cover Number.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 67–74. ACM (2007)Google Scholar
  2. 2.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 672–683. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A combinatorial analysis through kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel Bounds for Structural Parameterizations of Pathwidth. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 352–363. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized by vertex cover. arXiv:1305.0433 (2013)Google Scholar
  8. 8.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth parameterized by vertex cover. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 246–258. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Drucker, A.: New limits to classical and quantum instance compression. In: FOCS, pp. 609–618. IEEE Computer Society (2012)Google Scholar
  11. 11.
    Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  13. 13.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer (2010)Google Scholar
  14. 14.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)MATHGoogle Scholar
  15. 15.
    Heggernes, P., Mancini, F., Nederlof, J., Villanger, Y.: A parameterized algorithm for chordal sandwich. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 120–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing directed pathwidth in O(1.89n) time. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 182–193. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathieu Chapelle
    • 1
  • Mathieu Liedloff
    • 2
  • Ioan Todinca
    • 2
  • Yngve Villanger
    • 3
  1. 1.IGM-LabInfoUniversit Paris-Est Marne-la-ValléeMarne la Vallée cedex 2France
  2. 2.LIFOUniversité d’OrléansOrléans Cedex 2France
  3. 3.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations