On Explaining Integer Vectors by Few Homogenous Segments

  • Robert Bredereck
  • Jiehua Chen
  • Sepp Hartung
  • Christian Komusiewicz
  • Rolf Niedermeier
  • Ondřej Suchý
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)

Abstract

We extend previous studies on NP-hard problems dealing with the decomposition of nonnegative integer vectors into sums of few homogeneous segments. These problems are motivated by radiation therapy and database applications. If the segments may have only positive integer entries, then the problem is called Vector Explanation + . If arbitrary integer entries are allowed in the decomposition, then the problem is called Vector Explanation. Considering several natural parameterizations (including maximum vector entry, maximum difference between consecutive vector entries, maximum segment length), we obtain a refined picture of the computational (in-)tractability of these problems. In particular, we show that in relevant cases Vector Explanation +  is algorithmically harder than Vector Explanation .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, D., Barman, D., Gunopulos, D., Young, N., Korn, F., Srivastava, D.: Efficient and effective explanation of change in hierarchical summaries. In: Proc. 13th KDD, pp. 6–15. ACM (2007)Google Scholar
  2. 2.
    de Azevedo Pribitkin, W.: Simple upper bounds for partition functions. The Ramanujan Journal 18, 113–119 (2009)MATHCrossRefGoogle Scholar
  3. 3.
    Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of integer matrices and multileaf collimator sequencing. Discrete Appl. Math. 152(1-3), 6–34 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bansal, N., Chen, D.Z., Coppersmith, D., Hu, X.S., Luan, S., Misiolek, E., Schieber, B., Wang, C.: Shape rectangularization problems in intensity-modulated radiation therapy. Algorithmica 60(2), 421–450 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Biedl, T.C., Durocher, S., Hoos, H.H., Luan, S., Saia, J., Young, M.: A note on improving the performance of approximation algorithms for radiation therapy. Inf. Process. Lett. 111(7), 326–333 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Biedl, T.C., Durocher, S., Engelbeen, C., Fiorini, S., Young, M.: Faster optimal algorithms for segment minimization with small maximal value. Discrete Appl. Math. 161(3), 317–329 (2013)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp. 165–176. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  8. 8.
    Cambazard, H., O’Mahony, E., O’Sullivan, B.: A shortest path-based approach to the multileaf collimator sequencing problem. Discrete Appl. Math. 160(1-2), 81–99 (2012)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Drucker, A.: New limits to classical and quantum instance compression. In: Proc. 53rd IEEE FOCS, pp. 609–618. IEEE Computer Society (2012)Google Scholar
  10. 10.
    Ehrgott, M., Güler, C., Hamacher, H., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. Ann. Oper. Res. 175, 309–365 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–131. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  12. 12.
    Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. Theory Comput. Syst. 50(4), 675–693 (2012)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European J. Combin. 34(3), 541–566 (2013)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  16. 16.
    Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: Distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Karloff, H., Korn, F., Makarychev, K., Rabani, Y.: On parsimonious explanations for 2-d tree- and linearly-ordered data. In: Proc. 28th STACS. LIPIcs, vol. 9, pp. 332–343. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  19. 19.
    Luan, S., Saia, J., Young, M.: Approximation algorithms for minimizing segments in radiation therapy. Inf. Process. Lett. 101(6), 239–244 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  21. 21.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Bredereck
    • 1
  • Jiehua Chen
    • 1
  • Sepp Hartung
    • 1
  • Christian Komusiewicz
    • 1
  • Rolf Niedermeier
    • 1
  • Ondřej Suchý
    • 2
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany
  2. 2.Faculty of Information TechnologyCzech Technical University in PragueCzech Republic

Personalised recommendations