Relative Interval Analysis of Paging Algorithms on Access Graphs

  • Joan Boyar
  • Sushmita Gupta
  • Kim S. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)

Abstract

Access graphs, which have been used previously in connection with competitive analysis and relative worst order analysis to model locality of reference in paging, are considered in connection with relative interval analysis. The algorithms LRU, FIFO, FWF, and FAR are compared using the path, star, and cycle access graphs. In this model, some of the expected results are obtained. However, although LRU is found to be strictly better than FIFO on paths, it has worse performance on stars, cycles, and complete graphs, in this model. We solve an open question from [Dorrigiv, López-Ortiz, Munro, 2009], obtaining tight bounds on the relationship between LRU and FIFO with relative interval analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Journal of Computer and System Sciences 70(2), 145–175 (2005)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies. In: SODA 2007, pp. 229–237 (2007)Google Scholar
  3. 3.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  4. 4.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. Journal of Computer and System Sciences 50(2), 244–258 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Transactions on Algorithms 3(2), article No. 22 (2007)Google Scholar
  6. 6.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms on access graphs, arXiv:1305.0669 (cs.DS) (2013)Google Scholar
  9. 9.
    Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185 (1999)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Denning, P.J.: The working set model for program behaviour. Communications of the ACM 11(5), 323–333 (1968)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Denning, P.J.: Working sets past and present. IEEE Transactions on Software Engineering 6(1), 64–84 (1980)CrossRefGoogle Scholar
  13. 13.
    Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT News 36(3), 67–81 (2005)CrossRefGoogle Scholar
  14. 14.
    Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging algorithms. Theoretical Computer Science 410, 3694–3701 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM Journal on Computing 30(3), 906–922 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM Journal on Computing 30(1), 300–317 (2000)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica 11, 525–541 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joan Boyar
    • 1
  • Sushmita Gupta
    • 1
  • Kim S. Larsen
    • 1
  1. 1.University of Southern DenmarkOdenseDenmark

Personalised recommendations