On Maximum Weight Objects Decomposable into Based Rectilinear Convex Objects

  • Mahmuda Ahmed
  • Iffat Chowdhury
  • Matt Gibson
  • Mohammad Shahedul Islam
  • Jessica Sherrette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8037)


Our main concern is the following variant of the image segmentation problem: given a weighted grid graph and a set of vertical and/or horizontal base lines crossing through the grid, compute a maximum-weight object which can be decomposed into based rectilinear convex objects with respect to the base lines. Our polynomial-time algorithm reduces the problem to solving a polynomial number of instances of the maximum flow problem.


Grid Cell Image Segmentation Directed Graph Base Line Voronoi Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anzai, S., Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Effect of corner information in simultaneous placement of k rectangles and tableaux. Discrete Mathematics, Algorithms and Applications 2(4), 527–537 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Asano, T., Chen, D.Z., Katoh, N., Tokuyama, T.: Efficient algorithms for optimization-based image segmentation. Int. J. Comput. Geometry Appl. 11(2), 145–166 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T.F., Zhu, W.: Level set based shape prior segmentation. In: CVPR (2), pp. 1164–1170 (2005)Google Scholar
  4. 4.
    Chen, D.Z., Chun, J., Katoh, N., Tokuyama, T.: Efficient algorithms for approximating a multi-dimensional voxel terrain by a unimodal terrain. In: Chwa, K.-Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 238–248. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chen, D.Z., Hu, X.S., Luan, S., Wu, X., Yu, C.X.: Optimal terrain construction problems and applications in intensity-modulated radiation therapy. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 270–283. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chun, J., Horiyama, T., Ito, T., Kaothanthong, N., Ono, H., Otachi, Y., Tokuyama, T., Uehara, R., Uno, T.: Base location problems for base-monotone regions. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 53–64. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Algorithms for computing the maximum weight region decomposable into elementary shapes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1166–1174. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays. Discrete & Computational Geometry 42(3), 359–378 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chun, J., Sadakane, K., Tokuyama, T.: Efficient algorithms for constructing a pyramid from a terrain. IEICE Transactions 89-D(2), 783–788 (2006)MathSciNetGoogle Scholar
  10. 10.
    Das, P., Veksler, O., Zavadsky, V., Boykov, Y.: Semiautomatic segmentation with compact shape prior. Image Vision Comput. 27(1-2), 206–219 (2009)CrossRefGoogle Scholar
  11. 11.
    Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: CVPR (1), pp. 755–762 (2005)Google Scholar
  12. 12.
    Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-dimensional optimized accociation rules: Scheme, algorithms, and visualization. In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 13–23. ACM Press (1996)Google Scholar
  13. 13.
    Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with optimized two-dimensional association rules. ACM Trans. Database Syst. 26(2), 179–213 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gibson, M., Han, D., Sonka, M., Wu, X.: Maximum weight digital regions decomposable into digital star-shaped regions. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 724–733. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Gibson, M., Varadarajan, K., Wu, X.: On a planar segmentation problem (2012)Google Scholar
  16. 16.
    Hochbaum, D.S.: A new - old algorithm for minimum-cut and maximum-flow in closure graphs. Networks 37(4), 171–193 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Picard, J.-C.: Maximal closure of a graph and applications to combinatorial problems. Management Science 22(11), 1268–1272 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Thiruvenkadam, S.R., Chan, T.F., Hong, B.-W.: Segmentation under occlusions using selective shape prior. SIAM J. Imaging Sciences 1(1), 115–142 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mahmuda Ahmed
    • 1
  • Iffat Chowdhury
    • 1
  • Matt Gibson
    • 1
  • Mohammad Shahedul Islam
    • 1
  • Jessica Sherrette
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations