Advertisement

Pervasive and Intelligent Decision Support in Critical Health Care Using Ensembles

  • Filipe Portela
  • Manuel Filipe Santos
  • José Machado
  • António Abelha
  • Álvaro Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8060)

Abstract

Critical health care is one of the most difficult areas to make decisions. Every day new situations appear and doctors need to decide very quickly. Moreover, it is difficult to have an exact perception of the patient situation and a precise prediction on the future condition. The introduction of Intelligent Decision Support Systems (IDSS) in this area can help the doctors in the decision making process, giving them an important support based in new knowledge. Previous work has demonstrated that is possible to use data mining models to predict future situations of patients. Even so, two other problems arise: i) how fast; and ii) how accurate? To answer these questions, an ensemble strategy was experimented in the context of INTCare system, a pervasive IDSS to automatically predict the organ failure and the outcome of the patients throughout next 24 hours. This paper presents the results obtained combining real-time data processing with ensemble approach in the intensive care unit of the Centro Hospitalar do Porto, Porto, Portugal.

Keywords

Support Vector Machine Electronic Health Record Intensive Care Medicine Critical Health Intelligent Decision Support System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Portela, F., Santos, M.F., Gago, P., Silva, Á., Rua, F., Abelha, A., Machado, J., Neves, J.: Enabling real-time intelligent decision support in intensive care. In: 25th European Simulation and Modelling Conference, ESM 2011, 446 p. (2011)Google Scholar
  2. 2.
    Vilas-Boas, M., Santos, M.F., Portela, F., Silva, Á., Rua, F.: Hourly prediction of organ failure and outcome in intensive care based on data mining techniques. In: ICEIS, Funchal, Madeira, Portugal (2010)Google Scholar
  3. 3.
    Kantardzic, M.: Data mining: concepts, models, methods, and algorithms. Wiley-IEEE Press (2011)Google Scholar
  4. 4.
    Gago, P., Santos, M.F.: Towards an Intelligent Decision Support System for Intensive Care Units. In: 18th European Conference on Artificial Intelligence, Greece (2008)Google Scholar
  5. 5.
    Gago, P., Santos, M.F.: Evaluating Hybrid Ensembles for Intelligent Decision Support for Intensive Care. In: Okun, O., Valentini, G. (eds.) Applications of Supervised and Unsupervised Ensemble Methods. SCI, vol. 245, pp. 251–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Portela, F., Pinto, F., Santos, M.F.: Data Mining Predictive Models For Pervasive Intelligent Decision Support In Intensive Care Medicine. In: KMIS 2012. INSTICC, Barcelona (2012)Google Scholar
  8. 8.
    McMillen, R.E.: End of life decisions: Nurses perceptions, feelings and experiences. Intensive and Critical Care Nursing 24, 251–259 (2008)CrossRefGoogle Scholar
  9. 9.
    Mador, R.L., Shaw, N.T.: The impact of a Critical Care Information System (CCIS) on time spent charting and in direct patient care by staff in the ICU: A review of the literature. International Journal of Medical Informatics 78, 435–445 (2009)CrossRefGoogle Scholar
  10. 10.
    Häyrinen, K., Saranto, K., Nykänen, P.: Definition, structure, content, use and impacts of electronic health records: A review of the research literature. International Journal of Medical Informatics 77, 291–304 (2008)CrossRefGoogle Scholar
  11. 11.
    Orwat, C., Graefe, A., Faulwasser, T.: Towards pervasive computing in health care - A literature review. BMC Medical Informatics and Decision Making 8(26) (2008)Google Scholar
  12. 12.
    Lyerla, F., LeRouge, C., Cooke, D.A., Turpin, D., Wilson, L.: A Nursing Clinical Decision Support System and potential predictors of Head-of-Bed position for patients receiving Mechanical Ventilation. American Journal of Critical Care 19, 39–47 (2010)CrossRefGoogle Scholar
  13. 13.
    Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a Pervasive approach for Intelligent Decision Support in Critical Health Care. In: HCist 2011, Algarve, Portugal, p. 10 (2011)Google Scholar
  14. 14.
    Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Rating organ failure via adverse events using data mining in the intensive care unit. Artificial Intelligence in Medicine 43, 179–193 (2008)CrossRefGoogle Scholar
  15. 15.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J., Silva, A., Rua, F.: Information Modeling for Real-Time Decision Support in Intensive Medicine. In: Chen, S.Y., Li, Q. (eds.) Proceedings of the 8th International Conference on Applied Computer and Applied Computational Science, pp. 360–365. World Scientific and Engineering Acad. and Soc., Athens (2009)Google Scholar
  16. 16.
    Tamayo, P., Berger, C., Campos, M., Yarmus, J., Milenova, B., Mozes, A., Taft, M., Hornick, M., Krishnan, R., Thomas, S.: Oracle Data Mining. In: Data Mining and Knowledge Discovery Handbook, pp. 1315–1329 (2005)Google Scholar
  17. 17.
    Concepts, O.D.M.: 11g Release 1 (11.1). Oracle Corp. 2007 (2005)Google Scholar
  18. 18.
    Quinlan, J.R.: C4. 5: programs for machine learning. Morgan kaufmann (1993)Google Scholar
  19. 19.
    Cherkassky, V., Mulier, F.: Vapnik-Chervonenkis(VC) learning theory and its applications. IEEE Transactions on Neural Networks 10, 985–987 (1999)CrossRefGoogle Scholar
  20. 20.
    Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30, 1145–1159 (1997)CrossRefGoogle Scholar
  21. 21.
    Wang, W., Partridge, D., Etherington, J.: Hybrid ensembles and coincident-failure diversity, pp. 2376–2381. IEEE (2001)Google Scholar
  22. 22.
    Ting, K.M., Witten, I.H.: Issues in stacked generalization. Arxiv preprint arXiv:1105.5466 (2011)Google Scholar
  23. 23.
    Wolpert, D.H.: Stacked generalization*. Neural Networks 5, 241–259 (1992)CrossRefGoogle Scholar
  24. 24.
    Portela, F., Gago, P., Santos, M.F., Silva, A., Rua, F., Machado, J., Abelha, A., Neves, J.: Knowledge Discovery for Pervasive and Real-Time Intelligent Decision Support in Intensive Care Medicine. In: Publication, S.-A.T. (ed.) KMIS 2011. Springer, Paris, France (2011)Google Scholar
  25. 25.
    Guy, W.: ECDEU assessment manual for psychopharmacology, Rockville, Md (1976)Google Scholar
  26. 26.
    Guy, W., Modified From: Rush, J., et al.: Clinical Global Impressions (CGI) Scale. Psychiatric Measures. APA (2000) Google Scholar
  27. 27.
    Portela, F., Aguiar, J., Santos, M.F., Silva, Á., Rua, F.: Pervasive Intelligent Decision Support System — Technology Acceptance in Intensive Care Units. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 279–292. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Filipe Portela
    • 1
  • Manuel Filipe Santos
    • 1
  • José Machado
    • 2
  • António Abelha
    • 2
  • Álvaro Silva
    • 3
  1. 1.Algoritmi CentreUniversity of MinhoPortugal
  2. 2.CCTCUniversity of MinhoPortugal
  3. 3.Serviço Cuidados Intensivos, Centro Hospitalar do PortoHospital Santo AntónioPortugal

Personalised recommendations