Advertisement

SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge

  • Eli Ben-Sasson
  • Alessandro Chiesa
  • Daniel Genkin
  • Eran Tromer
  • Madars Virza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8043)

Abstract

An argument system for NP is a proof system that allows efficient verification of NP statements, given proofs produced by an untrusted yet computationally-bounded prover. Such a system is non-interactive and publicly-verifiable if, after a trusted party publishes a proving key and a verification key, anyone can use the proving key to generate non-interactive proofs for adaptively-chosen NP statements, and proofs can be verified by anyone by using the verification key.

We present an implementation of a publicly-verifiable non-interactive argument system for NP. The system, moreover, is a zero-knowledge proof-of-knowledge. It directly proves correct executions of programs on TinyRAM, a nondeterministic random-access machine tailored for efficient verification. Given a program P and time bound T, the system allows for proving correct execution of P, on any input x, for up to T steps, after a one-time setup requiring \(\tilde{O}(|P| \cdot T)\) cryptographic operations. An honest prover requires \(\tilde{O}(|P| \cdot T)\) cryptographic operations to generate such a proof, while proof verification can be performed with only O(|x|) cryptographic operations. This system can be used to prove the correct execution of C programs, using our TinyRAM port of the GCC compiler.

This yields a zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK) for program executions, in the preprocessing model — a powerful solution for delegating NP computations, with several features not achieved by previously-implemented primitives.

Our approach builds on recent theoretical progress in the area. We present efficiency improvements and implementations of two main ingredients:
  1. 1

    Given a C program, we produce a circuit whose satisfiability encodes the correctness of execution of the program. Leveraging nondeterminism, the generated circuit’s size is merely quasilinear in the size of the computation. In particular, we efficiently handle arbitrary and data-dependent loops, control flow, and memory accesses. This is in contrast with existing “circuit generators”, which in the general case produce circuits of quadratic size.

     
  2. 2

    Given a linear PCP for verifying satisfiability of circuits, we produce a corresponding SNARK. We construct such a linear PCP (which, moreover, is zero-knowledge and very efficient) by building and improving on recent work on quadratic arithmetic programs.

     

Keywords

computationally-sound proofs succinct arguments zero-knowledge delegation of computation 

References

  1. [ABB+12]
    Almeida, J.B., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Béguelin, S.Z.: Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols. In: CCS 2012 (2012)Google Scholar
  2. [BBK+09]
    Bangerter, E., Barzan, S., Krenn, S., Sadeghi, A.-R., Schneider, T.: Bringing zero-knowledge proofs of knowledge to practice (2009)Google Scholar
  3. [BCC88]
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BCC+09]
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. [BCCT13]
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKs and proof-carrying data. In: STOC 2013 (2013)Google Scholar
  6. [BCG+13]
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: TinyRAM architecture specification v1.00 (2013), http://scipr-lab.org/tinyram
  7. [BCGT13a]
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to delegatable succinct constraint satisfaction problems. In: ITCS (2013)Google Scholar
  8. [BCGT13b]
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of probabilistically-checkable proofs. In: STOC 2013 (2013)Google Scholar
  9. [BCI+13]
    Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. [BCKL08]
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. [BDNP08]
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: CCS 2008 (2008)Google Scholar
  12. [Ben65]
    Beneš, V.E.: Mathematical theory of connecting networks and telephone traffic. Academic Press, New York (1965)zbMATHGoogle Scholar
  13. [Ber02]
    Bernstein, D.J.: Pippenger’s exponentiation algorithm (2002), http://cr.yp.to/papers/pippenger.pdf
  14. [BFLS91]
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC 1991 (1991)Google Scholar
  15. [BGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988 (1988)Google Scholar
  16. [BHZ87]
    Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Information Processing Letters 25(2), 127–132 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [BP04]
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. [BS08]
    Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM Journal on Computing 38(2) (2008)Google Scholar
  19. [BW06]
    Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. [CKLM12]
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. [Dam92]
    Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  22. [Din07]
    Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3) (2007)Google Scholar
  23. [GGPR13]
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. [GH98]
    Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communication. Information Processing Letters 67(4), 205–214 (1998)MathSciNetCrossRefGoogle Scholar
  25. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987 (1987)Google Scholar
  26. [Gro05]
    Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. [Gro06]
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. [Gro10]
    Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. [GS89]
    Gurevich, Y., Shelah, S.: Nearly linear time. In: Logic at Botik 1989, Symposium on Logical Foundations of Computer Science, pp. 108–118 (1989)Google Scholar
  30. [Gue12]
    Gueron, S.: Intel advanced encryption standard (AES) instructions set (February 2012)Google Scholar
  31. [GVW02]
    Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic prover. Computational Complexity 11(1/2), 1–53 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. [HT98]
    Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. [KMO01]
    Katz, J., Myers, S., Ostrovsky, R.: Cryptographic counters and applications to electronic voting. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 78–92. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  34. [Lip11]
    Lipmaa, H.: Two simple code-verification voting protocols. Cryptology ePrint Archive, Report 2011/317 (2011)Google Scholar
  35. [Lip12]
    Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  36. [Mic00]
    Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–1298 (2000); Preliminary version appeared in FOCS 1994 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [MNPS04]
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation system. In: SSYM 2004 (2004)Google Scholar
  38. [MR08]
    Moshkovitz, D., Raz, R.: Two-query PCP with subconstant error. Journal of the ACM 57, 1–29 (2008); Preliminary version appeared in FOCS 2008 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [Rob91]
    Robson, J.M.: An O(T log T) reduction from RAM computations to satisfiability. Theoretical Computer Science 82(1), 141–149 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Sch78]
    Schnorr, C.-P.: Satisfiability is quasilinear complete in NQL. Journal of the ACM 25, 136–145 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  41. [StGDC13]
    Stallman, R.M., and the GCC Developer Community: GNU compiler collection internals (2013), http://gcc.gnu.org/onlinedocs/gccint.pdf
  42. [Wee05]
    Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 140–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Eli Ben-Sasson
    • 1
  • Alessandro Chiesa
    • 2
  • Daniel Genkin
    • 1
  • Eran Tromer
    • 3
  • Madars Virza
    • 2
  1. 1.TechnionIsrael
  2. 2.MITUSA
  3. 3.Tel Aviv UniversityIsrael

Personalised recommendations